Skip to main content

Advertisement

Log in

Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Fish generally have much higher requirements for dietary protein than mammals, and this long-standing puzzle remains unsolved. The present study was conducted with zebrafish (omnivores) and hybrid striped bass (HSB, carnivores) to test the hypothesis that AAs are oxidized at a higher rate than carbohydrates (e.g., glucose) and fatty acids (e.g., palmitate) to provide ATP for their tissues. Liver, proximal intestine, kidney, and skeletal muscle isolated from zebrafish and HSB were incubated at 28.5 °C (zebrafish) or 26 °C (HSB) for 2 h in oxygenated Krebs–Henseleit bicarbonate buffer (pH 7.4, with 5 mM d-glucose) containing 2 mM l-[U-14C]glutamine, l-[U-14C]glutamate, l-[U-14C]leucine, or l-[U-14C]palmitate, or a trace amount of d-[U-14C]glucose. In parallel experiments, tissues were incubated with a tracer and  a mixture of unlabeled substrates [glutamine, glutamate, leucine, and palmitate (2 mM each) plus 5 mM d-glucose]. 14CO2 was collected to calculate the rates of substrate oxidation. In the presence of glucose or a mixture of substrates, the rates of oxidation of glutamate and ATP production from this AA by the proximal intestine, liver, and kidney of HSB   were much higher than those for glucose and palmitate. This was also true for glutamate in the skeletal muscle and glutamine in the liver of both species, glutamine in the HSB kidney, and leucine in the zebrafish muscle, in the presence of a mixture of substrates. We conclude that glutamate plus glutamine plus leucine contribute to ~80% of ATP production in the liver, proximal intestine, kidney, and skeletal muscle of zebrafish and HSB. Our findings provide the first direct evidence that the major tissues of fish use AAs (mainly glutamate and glutamine) as primary energy sources instead of carbohydrates or lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAs:

Amino acids

BCAA:

Branched-chain amino acid

BCKA:

Branched-chain α-ketoacid

GDH:

Glutamate dehydrogenase

KHB:

Krebs–Henseleit bicarbonate

KIC:

ɑ-Ketoisocaproate

HSB:

Hybrid striped bass

NRC:

National Research Council

References

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. SpringerPlus 3:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballantyne JS (2001) Amino acid metabolism. Fish Physiol 19:77–107

    Article  Google Scholar 

  • Campbell JW, Aster PL, Vorhaben JE (1983) Mitochondrial ammoniagenesis in liver of the channel catfish Ictalurus punctatus. Am J Physiol 244:R709–R717

    CAS  PubMed  Google Scholar 

  • Chamberlin ME, Glemet HC, Ballantyne JS (1991) Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush). Am J Physiol 260:R159–R166

    CAS  PubMed  Google Scholar 

  • Christiansen DC, Klungs L (1987) Metabolic utilization of nutrients and the effects of insulin in fish. Comp Biochem Physiol B 88:701–711

    Article  CAS  PubMed  Google Scholar 

  • Cowey CB, Walton MJ (1988) Studies on the uptake of (14C) amino acids derived from both dietary (14C) protein and dietary (14C) amino acids by rainbow trout, Salmo gairdneri Richardson. J Fish Biol 33:293–305

    Article  CAS  Google Scholar 

  • Dawson AG, Hird FJR, Morton DJ (1967) Oxidation of leucine by rat liver and kidney. Arch Biochem Biophys 122:426–433

    Article  CAS  PubMed  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2006) Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp Biochem Physiol A 143:89–96

    Article  CAS  Google Scholar 

  • French CJ, Mommsen TP, Hochachka PW (1981) Amino acid utilisation in isolated hepatocytes from rainbow trout. Eur J Biochem 113:311–317

    Article  CAS  PubMed  Google Scholar 

  • Griffin ME, Wilson KA, Brown PB (1994) Dietary arginine requirement of juvenile hybrid striped bass. J Nutr 124:888–893

    CAS  PubMed  Google Scholar 

  • Hou Y, Yin Y, Wu G (2015) Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Hu SD, Jia SC et al (2016a) Whole-body synthesis of l-homoarginine in pigs and rats supplemented with l-arginine. Amino Acids 48:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016b) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SG, Rumsey GL, Nesheim MC (1983) Branched-chain amino acid aminotransferase in the tissues of lake trout. Comp Biochem Physiol B 76:3–5

    Article  Google Scholar 

  • Ip YK, Chew SF (2010) Ammonia production, excretion, toxicity, and defense in fish: a review. Front Physiol 1:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  • Jurss K, Bastrop R (1995) Amino acid metabolism in fish. Biochem Mol Biol Fishes 4:159–189

    Article  Google Scholar 

  • Kaushik SJ, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res 41:322–332

    Article  CAS  Google Scholar 

  • Laale HW (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research: a literature review. J Fish Biol 10:121–173

    Article  Google Scholar 

  • Latshaw JD, Bishop BL (2001) Estimating body weight and body composition of chickens by using noninvasive measurements. Poult Sci 80:868–873

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2012) Regulation of leucine catabolism by metabolic fuels in mammary epithelial cells. Amino Acids 43:2179–2189

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Feng DY, Zhang YL et al (2013) Hormonal regulation of leucine catabolism in mammary epithelial cells. Amino Acids 45:531–541

    Article  CAS  PubMed  Google Scholar 

  • Lenis YY, Wang XQ, Tang WJ et al (2016) Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells. Amino Acids 48:2389–2399

    Article  CAS  PubMed  Google Scholar 

  • Li P, Mai KS, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53

    Article  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Li H, Meininger CJ, Bazer FW, Wu G (2016) Intracellular sources of ornithine for polyamine synthesis in endothelial cells. Amino Acids 48:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Lobley GE, Milne V, Lovie JM et al (1980) Whole body and tissue protein synthesis in cattle. Br J Nutr 43:491–502

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC) (2000) Nutrient requirements of beef cattle. National Academies Press, Wahsington DC

    Google Scholar 

  • National Research Council (NRC) (2012) Nutrient requirements of swine. National Academies Press, Wahsington DC

    Google Scholar 

  • Polakof S, Álvarez R, Soengas JL (2010) Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am J Physiol 299:R19–R32

    CAS  Google Scholar 

  • Rønnestad I, Fyhn HJ (2008) Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev Fish Sci 1:37–41

    Google Scholar 

  • Rønnestad I, Thorsen A, Finn RN (1999) Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture 177:201–216

    Article  Google Scholar 

  • Self JT, Spencer TE, Johnson GA et al (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Sidell BD, Crockett EL, Driedzic WR (1995) Antarctic fish tissues preferentially catabolize monoenoic fatty acids. J exp Zool 271:73–81

    Article  CAS  Google Scholar 

  • Smits CHM, Moughan PJ, Smith WC (1988) Chemical whole-body composition of the 20 kg liveweight growing pig. New Zeal J Agric Res 31:155–157

    Article  Google Scholar 

  • Teigland M, Klungsøyr L (1983) Accumulation of α-ketoisocarproate from leucine in homogenates of tissues from rainbow trout (Salmo gairdnerii) and rat. An improved method for determination of branched chain keto acids. Comp Biochem Physiol B 75:703–705

    Article  CAS  PubMed  Google Scholar 

  • Tng YYM, Wee NLJ, Ip YK, Chew SF (2008) Postprandial nitrogen metabolism and excretion in juvenile marble goby, Oxyeleotris marmorata (Bleeker, 1852). Aquaculture 284:260–267

    Article  CAS  Google Scholar 

  • Van Waarde A (1983) Aerobic and anaerobic ammonia production by fish. Comp Biochem Physiol B 74:675–684

    Article  PubMed  Google Scholar 

  • van den Thillart G (1986) Energy metabolism of swimming trout (Salmo gairdneri)—oxidation rates of palmitate, glucose, lactate, alanine, leucine and glutamate. J Comp Physiol B 156:511–520

    Article  Google Scholar 

  • Weber JM, Haman F (1996) Pathways for metabolic fuels and oxygen in high performance fish. Comp Biochem Physiol A 113:33–38

    Article  Google Scholar 

  • Wijayasinghe MS, Milligan LP, Thompson JR (1983) In vitro degradation of leucine in muscle, adipose tissue, liver, and kidney of fed and starved sheep. Biosci Rep 3:1133 LP–1140 LP

    Article  Google Scholar 

  • Wilson RP (2002) Amino acids and proteins. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic, New York, pp 143–179

    Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol 272:G1382–G1390

    CAS  PubMed  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    CAS  PubMed  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC, Boca Raton

    Book  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G (2017) Principles of Animal Nutrition. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wu G, Thompson JR (1987) Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem 19:937–943

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Thompson JR, Baracos VE (1991) Glutamine metabolism in skeletal muscle from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J 274:769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE (1994) Synthesis of citrulline from glutamine in pig enterocytes. Biochem J 299:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida C, Maekawa M, Bannai M, Yamamoto T (2016) Glutamate promotes nucleotide synthesis in the gut and improves availability of soybean meal feed in rainbow trout. Springerplus 5:1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Zielke HR, Zielke CL, Ozand PT (1984) Glutamine: a major energy source for cultured mammalian cells. Fed Proc 43:121–125

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Texas A&M AgriLife Research (H-8200) and Guangdong Yuehai Feeds Group Co., Ltd. (Zhanjiang, China). We thank research assistants in our laboratory for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

All experimental procedures were approved by the Institutional Animal Care and Use Committee of Texas A&M University.

Additional information

Handling Editors: C.-A.A. Hu, Y. Yin, Y. Hou, G. Wu, Y. Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Li, X., Zheng, S. et al. Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49, 2053–2063 (2017). https://doi.org/10.1007/s00726-017-2481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2481-7

Keywords

Navigation