Skip to main content

Advertisement

Log in

Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Infectious diseases impose serious public health burdens and continue to be a global public health crisis. The treatment of infections caused by multidrug-resistant pathogens is challenging because only a few viable therapeutic options are clinically available. The emergence and risk of drug-resistant superbugs and the dearth of new classes of antibiotics have drawn increasing awareness that we may return to the pre-antibiotic era. To date, lipopeptides have been received considerable attention because of the following properties: They exhibit potent antimicrobial activities against a broad spectrum of pathogens, rapid bactericidal activity and have a different antimicrobial action compared with most of the conventional antibiotics used today and very slow development of drug resistance tendency. In general, lipopeptides can be structurally classified into two parts: a hydrophilic peptide moiety and a hydrophobic fatty acyl chain. To date, a significant amount of design and synthesis of lipopeptides have been done to improve the therapeutic potential of lipopeptides. This review will present the current knowledge and the recent research in design and synthesis of new lipopeptides and their derivatives in the last 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Albada HB, Prochnow P, Bobersky S, Langklotz S, Schriek P, Bandow JE, Metzler-Nolte N (2012) Tuning the activity of a short arg-trp antimicrobial peptide by lipidation of a C- or N-terminal lysine side-chain. ACS Med Chem Lett 3(12):980–984. doi:10.1021/ml300148v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albada HB, Prochnow P, Bobersky S, Langklotz S, Bandow JE, Metzler-Nolte N (2013) Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. ACS Comb Sci 15(11):585–592. doi:10.1021/co400072q

    Article  CAS  PubMed  Google Scholar 

  • Avrahami D, Shai Y (2003) Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D, L-amino acid-containing antimicrobial peptides: a plausible mode of action. Biochemistry 42(50):14946–14956. doi:10.1021/bi035142v

    Article  CAS  PubMed  Google Scholar 

  • Avrahami D, Shai Y (2004) A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 279(13):12277–12285. doi:10.1074/jbc.M312260200

    Article  CAS  PubMed  Google Scholar 

  • Azmi F, Elliott AG, Khalil ZG, Hussein WM, Kavanagh A, Huang JX, Quezada M, Blaskovich MA, Capon RJ, Cooper MA, Skwarczynski M, Toth I (2015) Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine (Lond) 10(22):3359–3371

    Article  CAS  Google Scholar 

  • Azmi F, Elliott AG, Marasini N, Ramu S, Ziora Z, Kavanagh AM, Blaskovich MA, Cooper MA, Skwarczynski M, Toth I (2016a) Short cationic lipopeptides as effective antibacterial agents: design, physicochemical properties and biological evaluation. Bioorg Med Chem 24(10):2235–2241. doi:10.1016/j.bmc.2016.03.053

    Article  CAS  PubMed  Google Scholar 

  • Azmi F, Skwarczynski M, Toth I (2016b) Towards the development of synthetic antibiotics: designs inspired by natural antimicrobial peptides. Curr Med Chem 23(41):4610–4624

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Liu S, Jiang P, Zhou L, Li J, Tang C, Verma C, Mu Y, Beuerman RW, Pervushin K (2009) Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry 48(30):7229–7239. doi:10.1021/bi900670d

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Liu S, Li J, Lakshminarayanan R, Sarawathi P, Tang C, Ho D, Verma C, Beuerman RW, Pervushin K (2012) Progressive structuring of a branched antimicrobial peptide on the path to the inner membrane target. J Biol Chem 287(32):26606–26617. doi:10.1074/jbc.M112.363259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranska-Rybak W, Pikula M, Dawgul M, Kamysz W, Trzonkowski P, Roszkiewicz J (2013) Safety profile of antimicrobial peptides: camel, citropin, protegrin, temporin a and lipopeptide on HaCaT keratinocytes. Acta Pol Pharm 70(5):795–801

    CAS  PubMed  Google Scholar 

  • Bhattacharjya S, Domadia PN, Bhunia A, Malladi S, David SA (2007) High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred Nuclear Overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry 46(20):5864–5874. doi:10.1021/bi6025159

    Article  CAS  PubMed  Google Scholar 

  • Bhunia A, Mohanram H, Domadia PN, Torres J, Bhattacharjya S (2009) Designed beta-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. J Biol Chem 284(33):21991–22004. doi:10.1074/jbc.M109.013573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bionda N, Fleeman RM, Shaw LN, Cudic P (2013) Effect of ester to amide or N-methylamide substitution on bacterial membrane depolarization and antibacterial activity of novel cyclic lipopeptides. ChemMedChem 8(8):1394–1402. doi:10.1002/cmdc.201300173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bionda N, Fleeman RM, de la Fuente-Nunez C, Rodriguez MC, Reffuveille F, Shaw LN, Pastar I, Davis SC, Hancock RE, Cudic P (2016) Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. Eur J Med Chem 108:354–363. doi:10.1016/j.ejmech.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM (2012) Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther 10(8):917–934. doi:10.1586/eri.12.78

    Article  CAS  PubMed  Google Scholar 

  • Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl HG, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286(5448):2361–2364

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Lee W, Kwa AL (2015) Polymyxin B versus colistin: an update. Expert Rev Anti Infect Ther 13(12):1481–1497. doi:10.1586/14787210.2015.1093933

    Article  CAS  PubMed  Google Scholar 

  • Catiau L, Traisnel J, Delval-Dubois V, Chihib NE, Guillochon D, Nedjar-Arroume N (2011) Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 32(4):633–638. doi:10.1016/j.peptides.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  • Citron DM, Tyrrell KL, Merriam CV, Goldstein EJ (2012) In vitro activities of CB-183,315, vancomycin, and metronidazole against 556 strains of Clostridium difficile, 445 other intestinal anaerobes, and 56 Enterobacteriaceae species. Antimicrob Agents Chemother 56(3):1613–1615. doi:10.1128/AAC.05655-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36(1):4–31. doi:10.1002/med.21321

    Article  CAS  PubMed  Google Scholar 

  • Cochrane SA, Lohans CT, Brandelli JR, Mulvey G, Armstrong GD, Vederas JC (2014) Synthesis and structure-activity relationship studies of N-terminal analogues of the antimicrobial peptide tridecaptin A(1). J Med Chem 57(3):1127–1131. doi:10.1021/jm401779d

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Shlaes D (2011) Fix the antibiotics pipeline. Nature 472(7341):32. doi:10.1038/472032a

    Article  CAS  PubMed  Google Scholar 

  • De Zotti M, Biondi B, Park Y, Hahm KS, Crisma M, Toniolo C, Formaggio F (2012) Antimicrobial lipopeptaibol trichogin GA IV: role of the three Aib residues on conformation and bioactivity. Amino Acids 43(4):1761–1777. doi:10.1007/s00726-012-1261-7

    Article  CAS  PubMed  Google Scholar 

  • De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V (2015) Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem 58(2):625–639. doi:10.1021/jm501084q

    Article  PubMed  CAS  Google Scholar 

  • Deris ZZ, Swarbrick JD, Roberts KD, Azad MA, Akter J, Horne AS, Nation RL, Rogers KL, Thompson PE, Velkov T, Li J (2014) Probing the penetration of antimicrobial polymyxin lipopeptides into gram-negative bacteria. Bioconjug Chem 25(4):750–760. doi:10.1021/bc500094d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domalaon R, Yang X, O’Neil J, Zhanel GG, Mookherjee N, Schweizer F (2014) Structure-activity relationships in ultrashort cationic lipopeptides: the effects of amino acid ring constraint on antibacterial activity. Amino Acids 46(11):2517–2530. doi:10.1007/s00726-014-1806-z

    Article  CAS  PubMed  Google Scholar 

  • Dugourd D, Yang H, Elliott M, Siu R, Clement JJ, Straus SK, Hancock RE, Rubinchik E (2011) Antimicrobial properties of MX-2401, an expanded-spectrum lipopeptide active in the presence of lung surfactant. Antimicrob Agents Chemother 55(8):3720–3728. doi:10.1128/AAC.00322-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epand RM (1997) Biophysical studies of lipopeptide-membrane interactions. Biopolymers 43(1):15–24. doi:10.1002/(SICI)1097-0282(1997)43:1<15:AID-BIP3>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  • Falagas ME, Kasiakou SK (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10(1):R27

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Zhong W, Wang Y, Xun T, Lin D, Liu W, Wang J, Lv L, Liu S, He J (2014) Tuning the antimicrobial pharmacophore to enable discovery of short lipopeptides with multiple modes of action. Eur J Med Chem 83:36–44. doi:10.1016/j.ejmech.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  • Ferguson EL, Azzopardi E, Roberts JL, Walsh TR, Thomas DW (2014) Dextrin–colistin conjugates as a model bioresponsive treatment for multidrug resistant bacterial infections. Mol Pharm 11(12):4437–4447. doi:10.1021/mp500584u

    Article  CAS  PubMed  Google Scholar 

  • Findlay B, Zhanel GG, Schweizer F (2012) Investigating the antimicrobial peptide ‘window of activity’ using cationic lipopeptides with hydrocarbon and fluorinated tails. Int J Antimicrob Agents 40(1):36–42. doi:10.1016/j.ijantimicag.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Konai MM, Sarkar P, Samaddar S, Haldar J (2016) Designing simple lipidated lysines: bifurcation imparts selective antibacterial activity. ChemMedChem. doi:10.1002/cmdc.201600400

    Google Scholar 

  • Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62(22):2588–2598. doi:10.1007/s00018-005-5373-z

    Article  CAS  PubMed  Google Scholar 

  • Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68(13):2255–2266. doi:10.1007/s00018-011-0717-3

    Article  CAS  PubMed  Google Scholar 

  • Goldberg K, Sarig H, Zaknoon F, Epand RF, Epand RM, Mor A (2013) Sensitization of gram-negative bacteria by targeting the membrane potential. FASEB J 27(9):3818–3826. doi:10.1096/fj.13-227942

    Article  CAS  PubMed  Google Scholar 

  • Grau-Campistany A, Manresa A, Pujol M, Rabanal F, Cajal Y (2016) Tryptophan-containing lipopeptide antibiotics derived from polymyxin B with activity against Gram positive and Gram negative bacteria. Biochim Biophys Acta 1858(2):333–343. doi:10.1016/j.bbamem.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  • Greber KE, Dawgul M, Kamysz W, Sawicki W, Lukasiak J (2014) Biological and surface-active properties of double-chain cationic amino acid-based surfactants. Amino Acids 46(8):1893–1898. doi:10.1007/s00726-014-1744-9

    Article  CAS  PubMed  Google Scholar 

  • Grossman TH, O’Brien W, Kerstein KO, Sutcliffe JA (2015) Eravacycline (TP-434) is active in vitro against biofilms formed by uropathogenic Escherichia coli. Antimicrob Agents Chemother 59(4):2446–2449. doi:10.1128/AAC.04967-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamley IW (2015) Lipopeptides: from self-assembly to bioactivity. Chem Commun (Camb) 51(41):8574–8583. doi:10.1039/c5cc01535a

    Article  CAS  Google Scholar 

  • Hanberger H, Walther S, Leone M, Barie PS, Rello J, Lipman J, Marshall JC, Anzueto A, Sakr Y, Pickkers P, Felleiter P, Engoren M, Vincent JL (2011) Increased mortality associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: results from the EPIC II study. Int J Antimicrob Agents 38(4):331–335. doi:10.1016/j.ijantimicag.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. doi:10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  • Haug BE, Stensen W, Kalaaji M, Rekdal O, Svendsen JS (2008) Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 51(14):4306–4314. doi:10.1021/jm701600a

    Article  CAS  PubMed  Google Scholar 

  • He J, Eckert R, Pharm T, Simanian MD, Hu C, Yarbrough DK, Qi F, Anderson MH, Shi W (2007) Novel synthetic antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 51(4):1351–1358. doi:10.1128/AAC.01270-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn JN, Sengillo JD, Lin D, Romo TD, Grossfield A (2012) Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics. Biochim Biophys Acta 1818(2):212–218. doi:10.1016/j.bbamem.2011.07.025

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Amin MN, Padhee S, Wang RE, Qiao Q, Bai G, Li Y, Mathew A, Cao C, Cai J (2012) Lipidated peptidomimetics with improved antimicrobial activity. ACS Med Chem Lett 3(8):683–686. doi:10.1021/ml3001215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang E, Yousef AE (2014) Paenibacterin, a novel broad-spectrum lipopeptide antibiotic, neutralises endotoxins and promotes survival in a murine model of Pseudomonas aeruginosa-induced sepsis. Int J Antimicrob Agents 44(1):74–77. doi:10.1016/j.ijantimicag.2014.02.018

    Article  CAS  PubMed  Google Scholar 

  • Ifrah D, Doisy X, Ryge TS, Hansen PR (2005) Structure-activity relationship study of anoplin. J Pept Sci 11(2):113–121. doi:10.1002/psc.598

    Article  CAS  PubMed  Google Scholar 

  • Jammal J, Zaknoon F, Kaneti G, Goldberg K, Mor A (2015) Sensitization of Gram-negative bacteria to rifampin and OAK combinations. Sci Rep 5:9216. doi:10.1038/srep09216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janiszewska J, Sowinska M, Rajnisz A, Solecka J, Lacka I, Milewski S, Urbanczyk-Lipkowska Z (2012) Novel dendrimeric lipopeptides with antifungal activity. Bioorg Med Chem Lett 22(3):1388–1393. doi:10.1016/j.bmcl.2011.12.051

    Article  CAS  PubMed  Google Scholar 

  • Jenner ZB, Crittenden CM, Gonzalez M, Brodbelt JS, Bruns KA (2017) Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity. Biopolymers. doi:10.1002/bip.23006

    PubMed  Google Scholar 

  • Jerala R (2007) Synthetic lipopeptides: a novel class of anti-infectives. Expert Opin Investig Drugs 16(8):1159–1169. doi:10.1517/13543784.16.8.1159

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Dewangan RP, Yadav S, Rawat DS, Pasha S (2012) Synthesis, antibacterial activity and mode of action of novel linoleic acid-dipeptide-spermidine conjugates. Org Biomol Chem 10(41):8326–8335. doi:10.1039/c2ob26393a

    Article  CAS  PubMed  Google Scholar 

  • Kamysz E, Sikorska E, Dawgul M, Tyszkowski R, Kamysz W (2015) Influence of dimerization of lipopeptide Laur-Orn-Orn-Cys-NH2 and an N-terminal peptide of human lactoferricin on biological activity. Int J Pept Res Ther 21:39–46. doi:10.1007/s10989-014-9423-y

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Li Y, Cai J, Song L (2016) Selective membrane disruption mechanism of an antibacterial gamma-AApeptide defined by EPR spectroscopy. Biophys J 110(8):1789–1799. doi:10.1016/j.bpj.2016.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SM, Kim JM, Joshi BP, Cho H, Lee KH (2009) Indolicidin-derived antimicrobial peptide analogs with greater bacterial selectivity and requirements for antibacterial and hemolytic activities. Biochim Biophys Acta 1794(2):185–192. doi:10.1016/j.bbapap.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  • Knight-Connoni V, Mascio C, Chesnel L, Silverman J (2016) Discovery and development of surotomycin for the treatment of Clostridium difficile. J Ind Microbiol Biotechnol 43(2–3):195–204. doi:10.1007/s10295-015-1714-6

    Article  CAS  PubMed  Google Scholar 

  • Koh JJ, Lin H, Caroline V, Chew YS, Pang LM, Aung TT, Li J, Lakshminarayanan R, Tan DT, Verma C, Tan AL, Beuerman RW, Liu S (2015) N-lipidated peptide dimers: effective antibacterial agents against gram-negative pathogens through lipopolysaccharide permeabilization. J Med Chem 58(16):6533–6548. doi:10.1021/acs.jmedchem.5b00628

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Fontana R, Lorenzi CC, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR, de Azevedo WF Jr, Palma MS, Nakajima T (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 1550(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Koopmans T, Wood TM, t Hart P, Kleijn LH, Hendrickx AP, Willems RJ, Breukink E, Martin NI (2015) Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J Am Chem Soc 137(29):9382–9389. doi:10.1021/jacs.5b04501

    Article  CAS  PubMed  Google Scholar 

  • Laverty G, Gorman SP, Gilmore BF (2015) Biofilm eradication kinetics of the ultrashort lipopeptide C12-OOWW-NH2 utilizing a modified MBEC Assay(). Chem Biol Drug Des 85(5):645–652. doi:10.1111/cbdd.12441

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Smith C, Wu H, Padhee S, Manoj N, Cardiello J, Qiao Q, Cao C, Yin H, Cai J (2014a) Lipidated cyclic gamma-AApeptides display both antimicrobial and anti-inflammatory activity. ACS Chem Biol 9(1):211–217. doi:10.1021/cb4006613

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Smith C, Wu H, Teng P, Shi Y, Padhee S, Jones T, Nguyen AM, Cao C, Yin H, Cai J (2014b) Short antimicrobial lipo-alpha/gamma-AA hybrid peptides. ChemBioChem 15(15):2275–2280. doi:10.1002/cbic.201402264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW (2017) Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 11:73. doi:10.3389/fnins.2017.00073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Grossfield A (2014) Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity. Biophys J 107(8):1862–1872. doi:10.1016/j.bpj.2014.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linington RG, Clark BR, Trimble EE, Almanza A, Urena LD, Kyle DE, Gerwick WH (2009) Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 72(1):14–17. doi:10.1021/np8003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EP, Tan DT, Beuerman RW (2008) Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. ChemBioChem 9(6):964–973. doi:10.1002/cbic.200700560

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Luo C, Smith PA, Chin JK, Page MG, Paetzel M, Romesberg FE (2011) Synthesis and characterization of the arylomycin lipoglycopeptide antibiotics and the crystallographic analysis of their complex with signal peptidase. J Am Chem Soc 133(44):17869–17877. doi:10.1021/ja207318n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohan S, Cameotra SS, Bisht GS (2013) Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem Biol Drug Des 82(5):557–566. doi:10.1111/cbdd.12182

    Article  CAS  PubMed  Google Scholar 

  • Lohans CT, Huang Z, van Belkum MJ, Giroud M, Sit CS, Steels EM, Zheng J, Whittal RM, McMullen LM, Vederas JC (2012) Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J Am Chem Soc 134(48):19540–19543. doi:10.1021/ja3089229

    Article  CAS  PubMed  Google Scholar 

  • Lohans CT, van Belkum MJ, Cochrane SA, Huang Z, Sit CS, McMullen LM, Vederas JC (2014) Biochemical, structural, and genetic characterization of tridecaptin A(1), an antagonist of Campylobacter jejuni. ChemBioChem 15(2):243–249. doi:10.1002/cbic.201300595

    Article  CAS  PubMed  Google Scholar 

  • Lundy FT, Nelson J, Lockhart D, Greer B, Harriott P, Marley JJ (2008) Antimicrobial activity of truncated alpha-defensin (human neutrophil peptide (HNP)-1) analogues without disulphide bridges. Mol Immunol 45(1):190–193

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Kang HS, Krunic A, Chen WL, Yang J, Woodard JL, Fuchs JR, Hyun Cho S, Franzblau SG, Swanson SM, Orjala J (2015) Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045. Bioorg Med Chem 23(13):3153–3162. doi:10.1016/j.bmc.2015.04.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee TV, Brown MF, Starr JT, Ackley DC, Abramite JA, Aubrecht J, Butler A, Crandon JL, Dib-Hajj F, Flanagan ME, Granskog K, Hardink JR, Huband MD, Irvine R, Kuhn M, Leach KL, Li B, Lin J, Luke DR, MacVane SH, Miller AA, McCurdy S, McKim JM Jr, Nicolau DP, Nguyen TT, Noe MC, O’Donnell JP, Seibel SB, Shen Y, Stepan AF, Tomaras AP, Wilga PC, Zhang L, Xu J, Chen JM (2013) Discovery of Dap-3 polymyxin analogues for the treatment of multidrug-resistant Gram-negative nosocomial infections. J Med Chem 56(12):5079–5093. doi:10.1021/jm400416u

    Article  CAS  PubMed  Google Scholar 

  • Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103(43):15997–16002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390(Pt 3):695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal SM, Barbosa AE, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31(2):338–345. doi:10.1016/j.biotechadv.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ML, Shai Y (2011) Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. Cell Mol Life Sci 68(13):2267–2280. doi:10.1007/s00018-011-0718-2

    Article  CAS  PubMed  Google Scholar 

  • Mascio CT, Mortin LI, Howland KT, Van Praagh AD, Zhang S, Arya A, Chuong CL, Kang C, Li T, Silverman JA (2012) In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile. Antimicrob Agents Chemother 56(10):5023–5030. doi:10.1128/AAC.00057-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascio CT, Chesnel L, Thorne G, Silverman JA (2014) Surotomycin demonstrates low in vitro frequency of resistance and rapid bactericidal activity in Clostridium difficile, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother 58(7):3976–3982. doi:10.1128/AAC.00124-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathew B, Nagaraj R (2015) Antimicrobial activity of human alpha-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides 71:128–140. doi:10.1016/j.peptides.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:473050. doi:10.1155/2015/473050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra B, Lushnikova T, Wang G (2015) Small lipopeptides possess anti-biofilm capability comparable to daptomycin and vancomycin. RSC Adv 5(73):59758–59769. doi:10.1039/C5RA07896B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanram H, Bhattacharjya S (2014) beta-Boomerang antimicrobial and antiendotoxic peptides: lipidation and disulfide bond effects on activity and structure. Pharmaceuticals (Basel) 7(4):482–501. doi:10.3390/ph7040482

    Article  CAS  Google Scholar 

  • Monroc S, Badosa E, Besalu E, Planas M, Bardaji E, Montesinos E, Feliu L (2006a) Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 27(11):2575–2584

    Article  CAS  PubMed  Google Scholar 

  • Monroc S, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E (2006b) De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27(11):2567–2574

    Article  CAS  PubMed  Google Scholar 

  • Nasompag S, Dechsiri P, Hongsing N, Phonimdaeng P, Daduang S, Klaynongsruang S, Camesano TA, Patramanon R (2015) Effect of acyl chain length on therapeutic activity and mode of action of the CX-KYR-NH2 antimicrobial lipopeptide. Biochim Biophys Acta 1848(10 Pt A):2351–2364. doi:10.1016/j.bbamem.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  • Nation RL, Velkov T, Li J (2014) Colistin and polymyxin B: Peas in a pod, or chalk and cheese? Clin Infect Dis 59(1):88–94. doi:10.1093/cid/ciu213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Padhee S, Wu H, Bai G, Qiao Q, Hu Y, Harrington L, Burda WN, Shaw LN, Cao C, Cai J (2012) Lipo-gamma-AApeptides as a new class of potent and broad-spectrum antimicrobial agents. J Med Chem 55(8):4003–4009. doi:10.1021/jm300274p

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Wu H, Li Y, Hu Y, Padhee S, Li Q, Cao C, Cai J (2013) AApeptides as a new class of antimicrobial agents. Org Biomol Chem 11(26):4283–4290. doi:10.1039/c3ob40444g

    Article  CAS  PubMed  Google Scholar 

  • Nkongolo S, Ni Y, Lempp FA, Kaufman C, Lindner T, Esser-Nobis K, Lohmann V, Mier W, Mehrle S, Urban S (2014) Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol 60(4):723–731. doi:10.1016/j.jhep.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  • Pasetka CJ, Erfle DJ, Cameron DR, Clement JJ, Rubinchik E (2010) Novel antimicrobial lipopeptides with long in vivo half-lives. Int J Antimicrob Agents 35(2):182–185. doi:10.1016/j.ijantimicag.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Ahmed S, Eswari JS (2015) Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World J Microbiol Biotechnol 31(8):1177–1193. doi:10.1007/s11274-015-1880-8

    Article  CAS  PubMed  Google Scholar 

  • Rabanal F, Grau-Campistany A, Vila-Farres X, Gonzalez-Linares J, Borras M, Vila J, Manresa A, Cajal Y (2015) A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci Rep 5:10558. doi:10.1038/srep10558

    Article  PubMed  PubMed Central  Google Scholar 

  • Radzishevsky IS, Rotem S, Bourdetsky D, Navon-Venezia S, Carmeli Y, Mor A (2007) Improved antimicrobial peptides based on acyl-lysine oligomers. Nat Biotechnol 25(6):657–659

    Article  CAS  PubMed  Google Scholar 

  • Resch A, Wilke M, Fink C (2009) The cost of resistance: incremental cost of methicillin-resistant Staphylococcus aureus (MRSA) in German hospitals. Eur J Health Econ 10(3):287–297. doi:10.1007/s10198-008-0132-3

    Article  PubMed  Google Scholar 

  • Roberts TC, Schallenberger MA, Liu J, Smith PA, Romesberg FE (2011) Initial efforts toward the optimization of arylomycins for antibiotic activity. J Med Chem 54(14):4954–4963. doi:10.1021/jm1016126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JL, Cattoz B, Schweins R, Beck K, Thomas DW, Griffiths PC, Ferguson EL (2016) In vitro evaluation of the interaction of dextrin–colistin conjugates with bacterial lipopolysaccharide. J Med Chem 59(2):647–654. doi:10.1021/acs.jmedchem.5b01521

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Gomez S, Ferrer-Espada R, Stewart PS, Pitts B, Lohner K, Martinez de Tejada G (2015) Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol 15:137. doi:10.1186/s12866-015-0473-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 122(24):5891–5892. doi:10.1021/ja000563a

    Article  CAS  Google Scholar 

  • Schneider T, Muller A, Miess H, Gross H (2014) Cyclic lipopeptides as antibacterial agents—potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 304(1):37–43. doi:10.1016/j.ijmm.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Benke SN, Nagendra N, Srivastava PL, Thulasiram HV, Gopi HN (2013) Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides. J Med Chem 56(21):8468–8474. doi:10.1021/jm400884w

    Article  CAS  PubMed  Google Scholar 

  • Siano A, Humpola MV, Rey MC, Simonetta A, Tonarelli GG (2011) Interaction of acylated and substituted antimicrobial peptide analogs with phospholipid-polydiacetylene vesicles. Correlation with their biological properties. Chem Biol Drug Des 78(1):85–93. doi:10.1111/j.1747-0285.2011.01099.x

    Article  CAS  PubMed  Google Scholar 

  • Sikorska E, Dawgul M, Greber K, Ilowska E, Pogorzelska A, Kamysz W (2014) Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. Biochim Biophys Acta 1838(10):2625–2634. doi:10.1016/j.bbamem.2014.06.016

    Article  CAS  PubMed  Google Scholar 

  • Slootweg JC, van Schaik TB, Quarles van Ufford HL, Breukink E, Liskamp RM, Rijkers DT (2013) Improving the biological activity of the antimicrobial peptide anoplin by membrane anchoring through a lipophilic amino acid derivative. Bioorg Med Chem Lett 23(13):3749–3752. doi:10.1016/j.bmcl.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Snydman DR, Jacobus NV, McDermott LA (2012) Activity of a novel cyclic lipopeptide, CB-183,315, against resistant Clostridium difficile and other gram-positive aerobic and anaerobic intestinal pathogens. Antimicrob Agents Chemother 56(6):3448–3452. doi:10.1128/AAC.06257-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straus SK, Hancock RE (2006) Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 1758(9):1215–1223

    Article  CAS  PubMed  Google Scholar 

  • t Hart P, Kleijn LH, de Bruin G, Oppedijk SF, Kemmink J, Martin NI (2014) A combined solid- and solution-phase approach provides convenient access to analogues of the calcium-dependent lipopeptide antibiotics. Org Biomol Chem 12(6):913–918. doi:10.1039/c3ob42238k

    Article  CAS  Google Scholar 

  • Teng P, Huo D, Nimmagadda A, Wu J, She F, Su M, Lin X, Yan J, Cao A, Xi C, Hu Y, Cai J (2016) Small antimicrobial agents based on acylated reduced amide scaffold. J Med Chem 59(17):7877–7887. doi:10.1021/acs.jmedchem.6b00640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varkey J, Nagaraj R (2005) Antibacterial activity of human neutrophil defensin HNP-1 analogs without cysteines. Antimicrob Agents Chemother 49(11):4561–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velkov T, Thompson PE, Nation RL, Li J (2010) Structure–activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916. doi:10.1021/jm900999h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8(6):711–724. doi:10.2217/fmb.13.39

    Article  CAS  PubMed  Google Scholar 

  • Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting gram-negative ‘superbugs’. ACS Chem Biol 9(5):1172–1177. doi:10.1021/cb500080r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila S, Badosa E, Montesinos E, Planas M, Feliu L (2016) Synthetic cyclolipopeptides selective against microbial, plant and animal cell targets by incorporation of d-amino acids or histidine. PLoS ONE 11(3):e0151639. doi:10.1371/journal.pone.0151639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamura H, Suzuki K, Uchibori K, Miyagawa A, Kawai M, Ohmizo C, Katsu T (2012) Mimicking an antimicrobial peptide polymyxin B by use of cyclodextrin. Chem Commun (Camb) 48(6):892–894. doi:10.1039/c1cc16369h

    Article  CAS  Google Scholar 

  • Yin N, Li J, He Y, Herradura P, Pearson A, Mesleh MF, Mascio CT, Howland K, Steenbergen J, Thorne GM, Citron D, Van Praagh AD, Mortin LI, Keith D, Silverman J, Metcalf C (2015) Structure–activity relationship studies of a series of semisynthetic lipopeptides leading to the discovery of Surotomycin, a novel cyclic lipopeptide being developed for the treatment of Clostridium difficile-associated diarrhea. J Med Chem 58(12):5137–5142. doi:10.1021/acs.jmedchem.5b00366

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu SP, Chen LY, Li J, Ong LB, Guo L, Wohland T, Tang CC, Lakshminarayanan R, Mavinahalli J, Verma C, Beuerman RW (2011) The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region. Amino Acids 40(1):123–133. doi:10.1007/s00726-010-0565-8

    Article  CAS  PubMed  Google Scholar 

  • Zweytick D, Deutsch G, Andra J, Blondelle SE, Vollmer E, Jerala R, Lohner K (2011) Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides. J Biol Chem 286(24):21266–21276. doi:10.1074/jbc.M110.195412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zweytick D, Japelj B, Mileykovskaya E, Zorko M, Dowhan W, Blondelle SE, Riedl S, Jerala R, Lohner K (2014) N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division. PLoS ONE 9(3):e90228. doi:10.1371/journal.pone.0090228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singhealth foundation research grant (SHF/FG691S/2016), National Medical Research Council (NMRC/CBRG/0080/2015 and NMRC/TCR/R1018) and the Singhealth Foundation (SHF/FG538P/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger W. Beuerman or Shouping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: J. D. Wade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, JJ., Lin, S., Beuerman, R.W. et al. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 49, 1653–1677 (2017). https://doi.org/10.1007/s00726-017-2476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2476-4

Keywords

Navigation