Skip to main content
Log in

Metabolism and distribution of pharmacological homoarginine in plasma and main organs of the anesthetized rat

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-Homoarginine (hArg) and guanidinoacetate (GAA) are produced from l-arginine (Arg) by the catalytic action of arginine:glycine amidinotransferase. Guanidinoacetate methyltransferase methylates GAA on its non-guanidine N atom to produce creatine. Arg and hArg are converted by nitric oxide synthase (NOS) to nitric oxide (NO). NO is oxidized to nitrite and nitrate which circulate in the blood and are excreted in the urine. Asymmetric dimethylarginine (ADMA), an NOS inhibitor, is widely accepted to be exclusively produced after asymmetric N G-methylation of Arg residues in proteins and their regular proteolysis. Low circulating and urinary hArg concentrations and high circulating concentrations of ADMA emerged as risk markers in the human renal and cardiovascular systems. While ADMA’s distribution and metabolism are thoroughly investigated, such studies on hArg are sparse. The aim of the present pilot study was to investigate the distribution of exogenous hArg in plasma, liver, kidney, lung, and heart in a rat model of takotsubo cardiomyopathy (TTC). hArg hydrochloride solutions in physiological saline were injected intra-peritoneally at potentially pharmacological, non-toxic doses of 20, 220, or 440 mg/kg body weight. Vehicle (saline) served as control. As hArg has been reported to be a pro-oxidant, plasma and tissue malondialdehyde (MDA) was measured as a biomarker of lipid peroxidation. hArg administration resulted in dose-dependent maximum plasma hArg concentrations and distribution in all investigated organs. hArg disappeared from plasma with an elimination half-life ranging between 20 and 40 min. hArg administration resulted in relatively small changes in the plasma and tissue content of Arg, GAA, ADMA, creatinine, and of the NO metabolites nitrite and nitrate. Remarkable changes were observed for tissue GAA, notably in the kidney. Plasma and tissue MDA concentration did not change upon hArg administration, suggesting that even high-dosed hArg is not an oxidant. The lowest hArg dose of 20 mg/kg bodyweight increased 25-fold the mean hArg maximum plasma concentration. This hArg dose seems to be useful as the upper limit in forthcoming studies on the putative cardioprotective effects of hArg in our rat model of TTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine (N G,N G-dimethyl-l-arginine)

AGAT:

Arginine:glycine amidinotransferase

DDAH:

Dimethylarginine dimethylaminohydrolase

GAA:

Guanidinoacetate

GAMT:

Guanidinoacetate methyltransferase

GC–MS:

Gas chromatography–mass spectrometry

hArg:

Homoarginine

MDA:

Malondialdehyde

N G :

Guanidine nitrogen

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PBS:

Phosphate buffered saline

SIC:

Stress-induced cardiomyopathy

TTC:

Takotsubo cardiomyopathy

References

  • Alessandrì MG, Celati L, Battini R, Casarano M, Cioni G (2005) Gas chromatography/mass spectrometry assay for arginine: glycine-amidinotransferase deficiency. Anal Biochem 343:356–358

    Article  PubMed  Google Scholar 

  • Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS et al (2016) Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 110:408–418

    Article  CAS  PubMed  Google Scholar 

  • Atzler D, Schönhoff M, Cordts K, Ortland I, Hoppe J, Hummel FC, Gerloff C, Jaehde U, Jagodzinski A, Böger RH, Choe CU, Schwedhelm E (2016) Oral supplementation with l-homoarginine in young volunteers. Br J Clin Pharmacol 82:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Jäger K, Dobrowolny H, Steiner J, Keilhoff G, Bogerts B, Laube G (2015) Possible sources and functions of l-homoarginine in the brain: review of the literature and own findings. Amino Acids 47:1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Bode-Böger SM (2006) Effect of l-arginine supplementation on NO production in man. Eur J Clin Pharmacol 62:91–99

    Article  Google Scholar 

  • Cathelineau L, Saudubray JM, Charpentier C, Polonovski C (1974) Letter: the presence of the homoanalogues of substrates of the urea cycle in the presence of argininosuccinate synthetase deficiency. Pediatr Res 8:857

    Article  CAS  PubMed  Google Scholar 

  • Chappell JB (1963) The effect of alkylguanidines on mitochondrial metabolism. J Biol Chem 238:410–417

    CAS  PubMed  Google Scholar 

  • Choe CU, Atzler D, Wild PS, Carter AM, Boger RH, Ojeda F et al (2013a) Homoarginine levels are regulated by arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Choe CU, Nabuurs C, Stockebrand MC, Neu A, Nunes P, Morellini F et al (2013b) Arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum Mol Genet 22:110–123

    Article  CAS  PubMed  Google Scholar 

  • Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S et al (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114:I16–I20

    Article  PubMed  Google Scholar 

  • Davids M, Ndika JD, Salomons GS, Blom HJ, Teerlink T (2012) Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 586:3653–3657

    Article  CAS  PubMed  Google Scholar 

  • Dellera F, Ganzetti GS, Froio A, Manzini S, Busnelli M, Meinitzer A, Sirtori CR, Chiesa G, Parolini C (2016) l-Homoarginine administration reduces neointimal hyperplasia in balloon-injured rat carotids. Thromb Haemost 116:400–402

    Article  PubMed  Google Scholar 

  • Gambaryan S, Tsikas D (2015) A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from l-arginine or nitrite? Amino Acids 47:1779–1793

    Article  CAS  PubMed  Google Scholar 

  • Hanff E, Böhmer A, Zinke M, Gambaryan S, Schwarz A, Supuran CT et al (2016a) Carbonic anhydrases are producers of S-nitrosothiols from inorganic nitrite and modulators of soluble guanylyl cyclase in human platelets. Amino Acids 48:1695–1706

    Article  CAS  PubMed  Google Scholar 

  • Hanff E, Kayacelebi AA, Yanchev GR, Maassen N, Haghikia A, Tsikas D (2016b) Simultaneous stable-isotope dilution GC–MS measurement of homoarginine, guanidinoacetate and their common precursor arginine in plasma and their interrelationships in healthy and diseased humans. Amino Acids 48:721–732

    Article  CAS  PubMed  Google Scholar 

  • Hanff E, Lützow M, Kayacelebi AA, Finkel A, Maassen M, Yanchev GR, Haghikia A, Bavendiek U, Buck A, Lücke T, Maassen N, Tsikas D (2017) Simultaneous GC–ECNICI–MS measurement of nitrite, nitrate and creatinine in human urine and plasma in clinical settings. J Chromatogr B 1047:207–2014

    Article  CAS  Google Scholar 

  • Hibbs JB Jr, Westenfelder C, Taintor R, Vavrin Z, Kablitz C, Baranowski RL, Ward JH, Menlove RL, McMurry MP, Kushner JP, Samlowski WE (1992) Evidence for cytokine-inducible nitric oxide synthesis from l-arginine in patients receiving interleukin-2 therapy. J Clin Invest 89:867–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Holecek M, Sispera L (2016) Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats. Nutrients 8:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollunger G (1955) Guanidines and oxidative phosporylations. Acta Pharmacol Toxicol 11(Suppl 1):1–84

    CAS  Google Scholar 

  • Hou Y, Hu S, Jia S, Nawaratna G, Che D, Wang F et al (2016) Whole-body synthesis of l-homoarginine in pigs and rats supplemented with l-arginine. Amino Acids 48:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Burnett PC (1972) Implication of creatinine and gut flora in the uremic syndrome: induction of “creatininase” in colon contents of the rat by dietary creatinine. Clin Chem 18:280–284

    CAS  PubMed  Google Scholar 

  • Kato T, Sano M, Mizutani N, Hayakawa C (1988) Homocitrullinuria and homoargininuria in hyperargininaemia. J Inherit Metab Dis 11:261–265

    Article  CAS  PubMed  Google Scholar 

  • Kayacelebi AA, Nguyen TH, Neil C, Horowitz JD, Jordan J, Tsikas D (2014) Homoarginine and 3-nitrotyrosine in patients with takotsubo cardiomyopathy. Int J Cardiol 173:546–547

    Article  PubMed  Google Scholar 

  • Kayacelebi AA, Langen J, Weigt-Usinger K, Chobanyan-Jurgens K, Mariotti F, Schneider JY et al (2015a) Biosynthesis of homoarginine (hArg) and asymmetric dimethylarginine (ADMA) from acutely and chronically administered free l-arginine in humans. Amino Acids 47:1893–1908

    Article  CAS  PubMed  Google Scholar 

  • Kayacelebi AA, Knöffel AK, Beckmann B, Hanff E, Warnecke G, Tsikas D (2015b) Measurement of unlabeled and stable isotope-labeled homoarginine, arginine and their metabolites in biological samples by GC–MS and GC–MS/MS. Amino Acids 47:2023–2034

    Article  CAS  PubMed  Google Scholar 

  • Lacza Z, Kozlov AV, Pankotai E, Csordás A, Wolf G, Redl H, Kollai M, Szabó C, Busija DW, Horn TF (2006a) Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res 40:369–378

  • Lacza Z, Pankotai E, Csordás A, Gero D, Kiss L, Horváth EM, Kollai M, Busija DW, Szabó C (2006b) Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 14:162–168

  • Levin B, Oberholzer VG, Palmer T (1974) Letter: the high levels of lysine, homocitrulline, and homoarginine found in argininosuccinate synthetase deficiency. Pediatr Res 8:857–858

    Article  CAS  PubMed  Google Scholar 

  • Mansuy D, Boucher JL (2004) Alternative nitric-oxide producing substrates for NO synthases. Free Radic Biol Med 37:1105–1121

    Article  CAS  PubMed  Google Scholar 

  • März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, Wanner C (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975

    Article  PubMed  Google Scholar 

  • McGuire DM, Tormanen CD, Segal IS, Van Pilsum JF (1980) The effect of growth hormone and thyroxine on the amount of l-arginine:glycine amidinotransferase in kidneys of hypophysectomized rats. Purification and some properties of rat kidney transamidinase. J Biol Chem 255:1152–1159

    CAS  PubMed  Google Scholar 

  • O’Neal RM, Chen CH, Reynolds CS, Meghal SK, Koeppe RE (1968) The ‘neurotoxicity’ of l-2,4-diaminobutyric acid. Biochem J 106:699–706

    Article  PubMed  PubMed Central  Google Scholar 

  • Pentyala J, Rao SLN (1999) Sustained nitric oxide generation with l-homoarginine. Res Commun Biochem Cell Mol Biol 3:223–232

    CAS  Google Scholar 

  • Pilz S, Meinitzer A, Gaksch M, Grübler M, Verheyen N, Drechsler C, Hartaigh BÓ, Lang F, Alesutan I, Voelkl J, März W, Tomaschitz A (2015) Homoarginine in the renal and cardiovascular systems. Amino Acids 47:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Redfors B, Oras J, Shao Y, Seemann-Lodding H, Ricksten SE, Omerovic E (2014) Cardioprotective effects of isoflurane in a rat model of stress-induced cardiomyopathy (takotsubo). Int J Cardiol 176:815–821

    Article  PubMed  Google Scholar 

  • Ryan WL, Wells IC (1964) Homocitrulline and homoarginine synthesis from lysine. Science 144:1122–1127

    Article  CAS  PubMed  Google Scholar 

  • Ryan WL, Barak AJ, Johnson RJ (1968) Lysine, homocitrulline, and homoarginine metabolism by the isolated perfused rat liver. Arch Biochem Biophys 123:294–297

    Article  CAS  PubMed  Google Scholar 

  • Ryan WL, Johnson RJ, Dimari S (1969) Homoarginine synthesis by rat kidney. Arch Biochem Biophys 131:521–526

    Article  CAS  PubMed  Google Scholar 

  • Sase A, Nawaratna G, Hu S, Wu G, Lubec G (2016) Decreased hippocampal homoarginine and increased nitric oxide and nitric oxide synthase levels in rats parallel training in a radial arm maze. Amino Acids 48:2197–2204

    Article  CAS  PubMed  Google Scholar 

  • Sasso S, Dalmedico L, Magro DD, Pereira EM, Wyse AT, de Lima DD (2015) Differential in vitro effects of homoarginine on oxidative stress in plasma, erythrocytes, kidney and liver of rats in the absence and in the presence alpha-tocopherol, ascorbic acid or l-NAME. Amino Acids 47:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Schneider JY, Rothmann S, Schröder F, Langen J, Lücke T, Mariotti F, Huneau JF, Frölich JC, Tsikas D (2015) Effects of chronic oral l-arginine administration on the l-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: l-arginine prevents renal loss of nitrite, the major NO reservoir. Amino Acids 47:1961–1974

    Article  CAS  PubMed  Google Scholar 

  • Stockebrand M, Hornig S, Neu A, Atzler D, Cordts K, Böger RH et al (2015) Homoarginine supplementation improves blood glucose in diet-induced obese mice. Amino Acids 47:1921–1927

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2000) Simultaneous derivatization and quantification of the nitric oxide metabolites nitrite and nitrate in biological fluids by gas chromatography/mass spectrometry. Anal Chem 72:4064–4072

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2015) Circulating and excretory nitrite and nitrate: their value as measures of nitric oxide synthesis, bioavailability and activity is inherently limited. Nitric Oxide 45:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Kayacelebi AA (2014) Do homoarginine and asymmetric dimethylarginine act antagonistically in the cardiovascular system? Circ J 78:2094–2095

    Article  PubMed  Google Scholar 

  • Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC (2000) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 478:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Rothmann S, Schneider JY, Gutzki FM, Beckmann B, Frölich JC (2017) Simultaneous measurement of malondialdehyde (MDA) and 4-hydroxy-2-nonenal in human plasma: effects of long-term l-arginine addministration. Anal Biochem 524:31–44

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Wu G (2015) Homoarginine, arginine, and relatives: analysis, metabolism, tcharansport, physiology, and pathology. Amino Acids 47:1697–1702

  • Verhoeven NM, Schor DS, Roos B, Battini R, Stöckler-Ipsiroglu S, Salomons GS, Jakobs C (2003) Diagnostic enzyme assay that uses stable-isotope-labeled substrates to detect l-arginine:glycine amidinotransferase deficiency. Clin Chem 49:803–805

    Article  CAS  PubMed  Google Scholar 

  • Vieira RP, Duarte AC, Claudino RC, Perini A, Santos AB, Moriya HT, Arantes-Costa FM, Martins MA, Carvalho CR, Dolhnikoff M (2007) Creatine supplementation exacerbates allergic lung inflammation and airway remodeling in mice. Am J Respir Cell Mol Biol 37:660–667

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wyse AT, Bavaresco CS, Hagen ME, Delwing D, Wannmacher CM, Severo Dutra-Filho C et al (2001) In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia. Brain Res 923:50–57

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Nakajima Y, Matsushita H, Nishiya Y, Yamazawa R, Wu YF, Matsubara F, Oyama H, Ito K, Yoshimoto T (2010) Substitution of Glu122 by glutamine revealed the function of the second water molecule as a proton donor in the binuclear metal enzyme creatininase. J Mol Biol 396:1081–1096

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wu Z, Jia S, Dahanayaka S, Feng S, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with l-arginine in rats. Amino Acids 47:1909–1920

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Tsikas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

Rats received humane care and the study protocol complied with the institutional guidelines of the Sahlgrenska University Hospital.

Additional information

Handling Editors: C.-A. A. Hu, Y. Yin, Y. Hou, G. Wu, Y. Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günes, D.N., Kayacelebi, A.A., Hanff, E. et al. Metabolism and distribution of pharmacological homoarginine in plasma and main organs of the anesthetized rat. Amino Acids 49, 2033–2044 (2017). https://doi.org/10.1007/s00726-017-2465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2465-7

Keywords

Navigation