Skip to main content

Advertisement

Log in

An overview on d-amino acids

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

More than half a century ago researchers thought that d-amino acids had a minor function compared to l-enantiomers in biological processes. Many evidences have shown that d-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, d-serine (d-Ser) acts as a co-agonist of the N-methyl-d-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. d-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, d-aspartate (d-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. d-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain d-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of d-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of d-amino acids: amino acid racemase in the synthesis and d-amino acid oxidase in the degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert C, Pohn G, Lóki K, Salamon S, Albert B, Sára P, Mándoki Z, Jánosné Csapó, Csapó J (2007) Effect of microorganism on free amino acid and free d-amino acid contents of various dairy products. Poljoprivreda 13:192–193

    Google Scholar 

  • Bada JL (1984) In vivo racemization in mammalian proteins. Methods Enzymol 106:98–115

    Article  CAS  PubMed  Google Scholar 

  • Bada JL, Cronin JR, Ho MS, Kvenvolden KA, Lawless JG (1983) On the reported optical activity of amino acids in the Murchison meteorite. Nature 310:494–497

    Article  Google Scholar 

  • Bauer D, Hamacher K, Bröer S, Pauleit D, Palm C, Zilles K, Coenen H, Langen KJ (2005) Preferred stereoselective brain uptake of d-serine-a modulator of glutamatergic neurotransmission. Nucl Med Biol 32:793–797

    Article  CAS  PubMed  Google Scholar 

  • Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–441

    Article  CAS  PubMed  Google Scholar 

  • Brückner H, Westhauser T (1994) Chromatographic determination of d-amino acids as native constituents of vegetables and fruits. Chromatographia 39:419–426

    Article  Google Scholar 

  • Brückner H, Jack P, Langer M, Godel H (1992) Liquid chromatographic determination of d-amino acids in cheese and cow milk. Implication of starter cultures. Amino acid racemases, and rumen microorganisms on formation and nutritional considerations. Amino Acids 2:271–284

    PubMed  Google Scholar 

  • Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211:969–980

    CAS  PubMed  Google Scholar 

  • Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68:817–831

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Tsai CF, Li CF (1999) Changes of amino acid composition and lysinoalanine formation in alkali-pickled duck eggs. J Agric Food Chem 47:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Kelkar DA (2005) Ion channel and d-amino acids. J Biosci 30:147–149

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners—a review. J Food Sci Technol 51:611–621

    Article  CAS  PubMed  Google Scholar 

  • Chiavaro E, Caligani A, Palla G (1998) Chiral indicators of aging in balsamic vinegars of Modena. Ital J Food Sci 10:327–329

    Google Scholar 

  • Choi SY, Esaki N, Yoshimura T, Soda K (1992) Reaction mechanism of glutamate racemase a pyridoxal phosphate-independent amino acid racemase. J Biochem 112:139–142

    Article  CAS  PubMed  Google Scholar 

  • Collingridge G (1987) Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330:604–605

    Article  CAS  Google Scholar 

  • Contreras PC (1990) d-Serine antagonized phencyclidine- and MK-801-induced stereotyped behavior and ataxia. Neuropharmacology 29:291–293

    Article  CAS  PubMed  Google Scholar 

  • Cook SP, Galve-Roperh I, Martínez del Pozo A, Rodríguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277:27782–27792

    Article  CAS  PubMed  Google Scholar 

  • Corrigan JJ (1969) d-Amino acids in animals. Science 164:142–149

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology 174:32–38

    Article  CAS  PubMed  Google Scholar 

  • Csapò J, Henics Z (1991) Quantitative determination of bacterial protein from the diaminopimelic acid and d-alanine content of rumen liquor and intestines. Acta Agron Hung 1–2:159–173

    Google Scholar 

  • Csapò J, Schmidt J, Csapò-Kiss Z, Hollo G, Hollo I, Wagner L, Cenkvari E, Varga-Visi E, Pohn G, Andrassy-Baka G (2001) A new method for the quantitative determination of protein of bacterial origin on the basis of d-aspartic acid and d-glutamic acid content. Acta Aliment 30:37–52

    Article  Google Scholar 

  • Csapò J, Varga-Visi E, Lòki K, Albert C (2006) The influence of manufacture on the free d-amino acid content of Cheddar cheese. Amino Acids 32:39–43

    Article  CAS  PubMed  Google Scholar 

  • Csapò J, Cs Albert, Zs Csapò-Kiss (2009) The d-amino acid content of foodstuffs (a review). Acta Univ Sapientiae Aliment 2:5–30

    Google Scholar 

  • D’Aniello A, Giuditta A (1978) Presence of d-aspartate in squid axoplasm and in other regions of the cephalopod nervous system. J Neurochem 31:1107–1108

    Article  PubMed  Google Scholar 

  • D’Aniello A, Cosmo AD, Cristo CD, Annunziato L, Petrucelli L, Fisher G (1996) Involvement of d-aspartic acid in the synthesis of testosterone in rat testes. Life Sci 59:97–104

    Article  PubMed  Google Scholar 

  • D’Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A (2005) Occurrence of d-aspartic acid in human seminal plasma and spermatozoa: possible role in reproduction. Fertil Steril 84:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • D’Aniello A (2007) D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53:215–234

    Article  CAS  PubMed  Google Scholar 

  • Danysz W, Parsons AC (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    CAS  PubMed  Google Scholar 

  • De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine. Proc Natl Acad Sci USA 99:14542–14547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Mol Brain Res 133:208–214

    Article  CAS  PubMed  Google Scholar 

  • Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141:27–32

    Article  CAS  PubMed  Google Scholar 

  • Ehmsen JT, Ma TM, Sason H, Rosenberg D, Ogo T, Furuya S, Snyder SH, Wolosker H (2013) d-Serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 33:12464–12469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D’Aniello A, Di Lauro R (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V, Melchiorri P, Falconier-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites (amphibian skin peptides/mouse vas deferens assay/receptor binding assay). Proc Natl Acad Sci USA 86:5188–5192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erspamer V, Erspamer GF, Severini C, Potenza RL, Barra D, Mignogna G, Bianchi A (1993) Pharmacological studies of ‘sapo’ from the frog Phyllomedusa bicolor skin: a drug used by the Peruvian Matses Indians in shamanic hunting practices. Toxicon 31:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Estevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) d-Serine and serine-racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Nat Acad Sci USA 100:6789–6794

    Article  CAS  Google Scholar 

  • Felbeck H (1985) Occurrence and metabolism of d-aspartate in the gutless bivalve Solemya reidi. J Exp Zool 234:145–149

    Article  CAS  Google Scholar 

  • Ferraris DV, Tsukamoto T (2011) Recent advances in the discovery of d-amino acid oxidase inhibitors and their therapeutic utility in schizophrenia. Curr Pharm Des 17:103–111

    Article  CAS  PubMed  Google Scholar 

  • Fischer HE (1891) Über die Konfiguration des Traubenzuckers und seiner Isomeren, I & II. Ber Dtsch Chem Ges 24(1836–1845):2683–2687

    Article  Google Scholar 

  • Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular d-serine levels through an alpha, beta-elimination activity. J Biol Chem 280:1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (2010) Origin, microbiology, nutrition, and pharmacology of d-amino acids. Chem Biodivers 7:1491–1530

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Levin CE (2012) Nutritional and medicinal aspects of d-amino acids. Amino Acids 42:1553–1582

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Gumbmann MR, Masters PM (1984) Protein-alkali reactions: chemistry, toxicology and nutritional consequences. Adv Exp Med Biol 177:367–412

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SA, Berger R, Klomp LW, de Koning TJ (2005) d-Amino acids in the central nervous system in health and disease. Mol Genet Metab 85:168–180

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Harada K, Momose Y, Ishii N, Akaboshi M (1999) d-Amino acid formation induced by a chiral field within a human lens protein during aging. Biochem Biophys Res Commun 263:322–326

    Article  CAS  PubMed  Google Scholar 

  • Furuchi T, Homma H (2005) Free d-aspartate in mammals. Biol Pharm Bull 28:1566–1570

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi I, Palla G, Marchelli R, Dossena A, Puelli S, Salvadori C (1994) d-Alanine in fruit juices: a molecular marker of bacterial activity, heat treatment and shelf-life. J Food Sci 59:152–154

    Article  CAS  Google Scholar 

  • Giraldez L, Girardi E (2000) Effects of an adenosine analogue administration on the striatal NMDA receptors in an experimental model of epilepsy. Neurochem Int 36:243–247

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti M, Simonetti MS, Rossim J, Cossignani L, Corsetti A, Damiani P (1994) Free d- and l-amino acid evolution during sourdough fermentation and baking. J Food Sci 59:881–884

    Article  CAS  Google Scholar 

  • Gu JQ, Alexander DC, Rock J, Brian P, Chu M, Baltz RH (2010) Structural characterization of a lipopeptide antibiotic A54145E(Asn3Asp9) produced by a genetically engineered strain of Streptomyces fradiae. J Antibiot 64:111–116

    Article  CAS  PubMed  Google Scholar 

  • Hamase K (2007) Sensitive two-dimensional determination of small amounts of d-amino acids in mammals and the study on their functions. Chem Pharmaceut Bull 55:503–510

    Article  CAS  Google Scholar 

  • Hamase K, Homma H, Takigawa Y, Fukushima T, Santa T, Imai K (1997) Regional distribution and postnatal changes of d-amino acids in rat brain. Biochim Biophys Acta 1334:214–222

    Article  CAS  PubMed  Google Scholar 

  • Hamase K, Morikawa A, Zaitsu K (2002) d-Amino acids in mammals and their diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 781:73–91

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2006) The NMDA receptor hypofunction hypothesis for schizophrenia and glycine modulatory sites on the NMDA receptors as potential therapeutic drugs. Clin Psychopharmacol Neurosci 4:3–10

    CAS  Google Scholar 

  • Hashimoto A, Oka T (1997) Free d-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52:325–353

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T, Takahashi K (1993) Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci Lett 15:33–36

    Article  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T (1995) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Hayase F, Kato H, Fujimaki M (1975) Racemization of amino acid residues in protein of poly(l-amino) acids during roasting. J Agric Food Chem 23:491–494

    Article  CAS  PubMed  Google Scholar 

  • Helfman PM, Bada JL (1976) Aspartic acid racemization in dentine as a measure of aging. Nature 262:279–281

    Article  CAS  PubMed  Google Scholar 

  • Hin N, Duvall B, Berry JF, Ferrari DV, Rais R, Alt J, Rojas C, Slusher BS, Tsukamoto T (2016) d-Amino acid oxidase inhibitors based on the 5-hydroxy-1,2,4-triazin-6(1H)-one scaffold. Bioorg Med Chem Lett 26:2088–2091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong SY, Oh JE, Lee KH (1999) Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58:1775–1780

    Article  CAS  PubMed  Google Scholar 

  • Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K (2011) Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59:853–859

    Article  CAS  PubMed  Google Scholar 

  • Huang AS, Beigneux A, Weil ZM, Kim PM, Molliver ME, Blackshaw S, Nelson RJ, Young SG, Snyder SH (2006) d-Aspartate regulates melanocortin formation and function: behavioral alterations in d-aspartate oxidase-deficient mice. J Neurosci 26:2814–2819

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Hayashida M, Kobayashi S, Muto N, Hayashi A, Yoshimura T, Mori H (2016) Serine racemase is involved in d-aspartate biosynthesis. J Biochem 160:345–353

    Article  CAS  PubMed  Google Scholar 

  • Jack RW, Jung G (1998) Natural peptides with antimicrobial activity. Chimia 52:48–55

    CAS  Google Scholar 

  • Jimenez EC, Olivera BM, Gray WR, Cruz LJ (1996) Contryphan is a d-tryptophan-containing Conus peptide. J Biol Chem 271:28002–28005

    Article  CAS  PubMed  Google Scholar 

  • Kalman D, Barriere SL (1990) Review of the pharmacology, pharmacokinetics, and clinical use of cephalosporins. Tex Heart Inst J 17:203–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 281:14151–14162

    Article  CAS  PubMed  Google Scholar 

  • Kehagias C, Csapó J, Konteles S, Kolokitha E, Koulouris S, Csapó-Kiss Z (2008) Support of growth and formation of D-amino acids by Bifidobacterium longum in cows’, ewes’, goats’ milk and modified whey powder products. Int Dairy J 18:396–402

    Article  CAS  Google Scholar 

  • Koehbach J, Gruber CW, Becker C, Kreil DP, Jilek A (2016) MALDI TOF/TOF-based approach for the identification of d-amino acids in biologically active peptides and proteins. J Proteome Res 15:1487–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Wolosker H (2015) Nuclear compartmentalization of serine racemase regulates d-serine production: implications for N-methyl-d-aspartate (NMDA) receptor activation. J Biol Chem 290:31037–31050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids. Deamination of amino-acids. Biochem J 29:1620–1644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreil G (1997) d-Amino acids in animal peptides. Annu Rev Biochem 66:337–345

    Article  CAS  PubMed  Google Scholar 

  • Krysta JH, D’Souza DC, Petrakis L, Belger A, Berman RM, Charney DS, Abi-Saab W, Madonick S (1999) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 7:125–143

    Article  Google Scholar 

  • Labrie V, Wong AHC, Roder JC (2012) Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62:1484–1503

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee DG (2008) Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp Mol Med 40:370–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linden G, Lorient D (1999) New ingredients in food processing. In: Linden G, Lorient D (eds) Biochemistry and agriculture. CRC Press, Boca Raton, Woodhead Publishing Limited, Cambridge England

  • Man EH, Bada JL (1987) Dietary d-amino acids. Annu Rev Nutr 7:209–225

    Article  CAS  PubMed  Google Scholar 

  • Matsushima O, Katayama H, Yamada K, Kado Y (1984) Occurrence of free d-alanine and alanine racemase activity in bivalve mollusks with special reference to intracellular osmoregulation. Mar Biol Lett 5:217–225

    CAS  Google Scholar 

  • Miller RF (2004) d-Serine as a glial modulator of nerve cells. Glia 47:275–283

    Article  PubMed  Google Scholar 

  • Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V (1981) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17:275–283

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferri CD, Rogawski MA, Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oancea S, Formaggio F (2008) Biological role of d-α-amino acids and their occurrence in foodstuffs. Acta Univ Cibiniensis Ser E Food Technol 12:3–18

    CAS  Google Scholar 

  • Ohtani S, Yamamoto T, Matsushima Y, Kobayashi Y (1998) Changes in the amount of d-aspartic acid in the femur with age. Growth Dev Aging 62:141–148

    CAS  PubMed  Google Scholar 

  • Ollivaux C, Soyez D, Toullec JY (2014) Biogenesis of D-amino acid containing peptides/proteins: where, when and how? J Pept Sci 20:595–612

    Article  CAS  PubMed  Google Scholar 

  • Palazzo E, Novellis V, Marabese I, Cuomo D, Rossi F, Berrino L, Rossi F, Maione S (2002) Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 439:69–75

    Article  CAS  PubMed  Google Scholar 

  • Paquet A, Rayman K (1987) Some N-acyl-d-amino acid derivatives having antibotulinal properties. Can J Microbiol 33:577–582

    Article  CAS  PubMed  Google Scholar 

  • Pearce KN, Karahalios D, Friedman M (1988) Ninhydrin assay for proteolysis in ripening cheese. J Food Sci 53:432–435

    Article  CAS  Google Scholar 

  • Pernot P, Mothet JP, Schuvailo O, Soldatkin A, Pollegioni L, Pilone M, Adeline MT, Cespuglio R, Marinesco S (2008) Characterization of a yeast d-amino acid oxidase microbiosensor for d-serine detection in the central nervous system. Anal Chem 80:1589–1597

    Article  CAS  PubMed  Google Scholar 

  • Pilone MS, Pollegioni L (2002) d-Amino acid oxidase as an industrial biocatalyst. Biocatal Biotransform 20:145–159

    Article  CAS  Google Scholar 

  • Preston RL (1987) Occurrence of d-amino acids in higher organisms: a survey of the distribution of d-amino acids in marine invertebrates. Comp Biochem Physiol 87B:55–62

    CAS  Google Scholar 

  • Reaveley DA, Burge RE (1972) Walls and membranes in bacteria. Adv Microb Physiol 7:1–81

    Article  CAS  Google Scholar 

  • Reynolds PE (1998) Control of peptidoglycan synthesis in vancomycin-resistant enterococci: d,d-peptidases and d,d-carboxypeptidases. Cell Mol Life Sci 54:325–331

    Article  CAS  PubMed  Google Scholar 

  • Robinson T (1976) d-Amino acids in higher plants. Life Sci 19:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Rolinson GN, Geddes AM (2007) The 50th anniversary of the discovery of 6-aminopenicillanic acid (6-APA). Int J Antimicrob Agents 29:3–8

    Article  CAS  PubMed  Google Scholar 

  • Rooke JA, Greife HA, Armstrong DG (1984) The effect of in sacco rumen incubation of a grass silage upon the total and d-amino acid composition of the residual silage dry matter. J Agric Sci 102:695–702

    Article  CAS  Google Scholar 

  • Rosenberg D, Kartvelishvily E, Shleper M, Klinker CMC, Bowser MT, Wolosker H (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24:2951–2961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryadnov MG, Degtyareva OV, Kashparov IA, Mitin YV (2002) A new synthetic all-d-peptide with high bacterial and low mammalian cytotoxicity. Peptides 23:1869–1871

    Article  CAS  PubMed  Google Scholar 

  • Sacchi S, Rosini E, Pollegioni L, Molla G (2013) d-Amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des 19:2499–2511

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1997) d-Aspartic acid localization during postnatal development of rat adrenal gland. Biochem Biophys Res Commun 235:433–436

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Homma H, Lee JA, Fukushima T, Santa T, Tashiro K, Iwatsubo T, Imai K (1998) Localization of d-aspartic acid in elongate spermatids in rat testis. Arch Biochem Biophys 351:96–105

    Article  CAS  PubMed  Google Scholar 

  • Sarges R, Witkop B (1965) Gramicidin A.V. The structure of valine- and isoleucine-gramicidin A. J Am Chem Soc 87:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997a) d-Serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

    CAS  PubMed  Google Scholar 

  • Schell MJ, Cooper OB, Snyder SH (1997b) d-Aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci USA 94:2013–2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shleper M, Kartvelishvily E, Wolosker H (2005) d-Serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 25:9413–9417

    Article  CAS  PubMed  Google Scholar 

  • Simó C, Martín-Alvarez PJ, Barbas C, Cifuentes A (2004) Application of stepwise discriminant analysis to classify commercial orange juices using chiral micellar electrokinetic chromatography-laser induced fluorescence data of amino acids. Electrophoresis 25:2885–2891

    Article  CAS  PubMed  Google Scholar 

  • Tipper DJ, Wright A (1979) The structure and biosynthesis of bacterial cell walls. In: Gunsalus LC, Sokatch JR, Ornstorn LN (eds) The bacteria: a treatise on structure and function. Academic Press, New York, pp 291–426

    Google Scholar 

  • Tishkov VI, Savin SS, Khoronenkova SV (2008) Creation of biocatalysts with prescribed properties. Russ Chem Bull 57:1014–1022

    Article  CAS  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange L, Coyle JT (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Veiga P, Piquet S, Maisons A, Furlan S, Courtin P, Chapot-Chartier MP, Kulakauskas S (2006) Identification of an essential gene responsible for d-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. Mol Microbiol 62:1713–1724

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Mcinnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107:535–550

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wolosker H, Morris JF, Pevsner J, Snyder SH, Selkoe DJ (2002) Naturally occurring free d-aspartate is a nuclear component of cells in the mammalian hypothalamo-neurohypophyseal system. Neuroscience 109:1–4

    Article  CAS  PubMed  Google Scholar 

  • Watanabe A, Kurokawa Y, Yoshimura T, Kurihara T, Soda K, Esaki N (1999) Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5′-phosphate. J Biol Chem 274:4189–4194

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris C, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolosker H, D’Aniello A, Snyder SH (2000) d-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100:183–189

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-Amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) Properties of aspartate racemase, a pyridoxal 5′-phosphate-independent amino acid racemase. J Biol Chem 267:18361–18364

    CAS  PubMed  Google Scholar 

  • Yoshimura T, Esak N (2003) Amino acid racemases: functions and mechanisms. J Biosci Bioeng 96:103–109

    Article  CAS  PubMed  Google Scholar 

  • Zhao SL, Feng YZ, LeBlanc MH, Liu YM (2001) Determination of free aspartic acid enantiomers in rat brain by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl 762:97–101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support provided by Ministero dell’Istruzione, dell’Università e della Ricerca, Italia (MIUR). The author also thanks Dr. Adelaide Romito for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Genchi.

Ethics declarations

Conflict of interest

The author reports that there are no conflicts of interest.

Additional information

Handling Editor: J. D. Wade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genchi, G. An overview on d-amino acids. Amino Acids 49, 1521–1533 (2017). https://doi.org/10.1007/s00726-017-2459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2459-5

Keywords

Navigation