Skip to main content
Log in

Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH2). Two glycotriazole-peptides, namely [p-Glc-trz-G1]HSP1-NH2 and [p-GlcNAc-trz-G1]HSP1-NH2, were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO4·5H2O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G1]HSP1-NH2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH2 presents relatively low and [trz-G1]HSP1-NH2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMPs:

Antimicrobial peptides

CD:

Circular dichroism spectroscopy

CF:

Carboxyfluorescein

CF%:

Percentage of carboxyfluorescein release

CuAAC:

Copper(I)-catalyzed azide-alkyne cycloaddition

DCM:

Dichloromethane

D h :

Hydrodynamic diameter

DIC:

Diisopropylcarbodiimide

DLS:

Dynamic light scattering

DMF:

N,N-dimethylformamide

EDTA:

Ethylenediaminetetraacetic acid

HOBt:

1-Hydroxybenzotriazole

IPA:

Isopropyl alcohol

LUVs:

Large unilamellar vesicles

MIC:

Minimum inhibitory concentration

PIPE:

4-Methylpiperidine

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

SPR:

Surface plasmon resonance

Tris:

2-Amino-2-hydroxymethyl-propane-1,3-diol

HSP1:

Hylaseptin-P1

HSP1-NH2 :

Carboxyamidated C-terminus hylaseptin-P1

[Pra1]HSP1-NH2 :

Propargylated HSP1-NH2

[p-GlcNAc-trz-G1]HSP1-NH2 :

per-O-acetylated N-acetilglucosamine-triazole derived from HSP1-NH2

[p-Glc-trz-G1]HSP1-NH2 :

per-O-acetylated N-acetilglucose-triazole derived from HSP1-NH2

[trz-G1]HSP1-NH2 :

Triazole-peptide derived from HSP1-NH2

THF:

Tetrahydrofuran

References

  • Ali MF, Soto AM, Knoop FC, Conlon JM (2001) Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). Biochim Biophys Acta Protein Struct Mol Enzymol 1550(1):81–89

    Article  CAS  Google Scholar 

  • Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide–alkyne cycloadditions. Chem Soc Rev 36(10):1674–1689

    Article  CAS  PubMed  Google Scholar 

  • Arthington-Skaggs BA, Jradi H, Desai T, Morrison CJ (1999) Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol 37(10):3332–3337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beschiaschvili G, Seelig J (1990) Peptide binding to lipid bilayers. Binding isotherms and zeta.-potential of a cyclic somatostatin analog. Biochemistry 29(49):10995–11000

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Dimarcq J, Hetru C, Lagueux M, Charlet M, Hegy G, Van Dorsselaer A, Hoffmann J (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268(20):14893–14897

    CAS  PubMed  Google Scholar 

  • Bulet P, Hegy G, Lambert J, Van Dorsselaer A, Hoffmann JA, Hetru C (1995) Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycans necessary for biological activity. Biochemistry 34(22):7394–7400

    Article  CAS  PubMed  Google Scholar 

  • Butler MS, Hansford KA, Blaskovich MA, Halai R, Cooper MA (2014) Glycopeptide antibiotics: back to the future. J Antibiot 67(9):631–644

    Article  CAS  PubMed  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis. Oxford University Press, New York

    Google Scholar 

  • Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, Hoffmann J, Bulet P (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J 300(2):567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva FP, Machado MCC (2012) Antimicrobial peptides: clinical relevance and therapeutic implications. Peptides 36(2):308–314

    Article  Google Scholar 

  • Dwek RA (1998) Biological importance of glycosylation. Molecular recognition and inclusion. Springer, Dordrecht, pp 1–6

    Google Scholar 

  • Echemendía R, Concepción O, Morales FE, Paixao MW, Rivera DG (2014) The Cu I-catalyzed alkyne–azide cycloaddition as direct conjugation/cyclization method of peptides to steroids. Tetrahedron 70(20):3297–3305

    Article  Google Scholar 

  • Ferreira SZ, Carneiro HC, Lara HA, Alves RB, Resende JM, Oliveira HM, Silva LM, Santos DA, Freitas RP (2015) Synthesis of a new peptide-coumarin conjugate: a potential agent against Cryptococcosis. ACS Med Chem Lett 6(3):271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco LL, Brandão MC, José Filho D, Alves RJ (2015) Synthesis of d-glucose-and N-acetylglucosamine-based N-glycosylsulfonamides. Quim Nova 38(8):1044–1052

    CAS  Google Scholar 

  • Freire JM, Domingues MM, Matos J, Melo MN, Veiga AS, Santos NC, Castanho MA (2011) Using zeta-potential measurements to quantify peptide partition to lipid membranes. Eur Biophys J 40(4):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel Jdos S, Tiera MJ, Tiera VA (2015) Synthesis, characterization, and antifungal activities of amphiphilic derivatives of diethylaminoethyl chitosan against aspergillus flavus. J Agric Food Chem 63(24):5725–5731

    Article  PubMed  Google Scholar 

  • Haase C, Seitz O (2006) Chemical synthesis of glycopeptides. Glycopeptides and glycoproteins. Springer, New York, pp 1–36

    Google Scholar 

  • Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  PubMed  Google Scholar 

  • James RC, Pierce JG, Okano A, Xie J, Boger DL (2012) Redesign of glycopeptide antibiotics: back to the future. ACS Chem Biol 7(5):797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Zhang W, Zhou Y, Zhang M, Zhu J, Song Y, Lü J, Zhu J (2000) A three-dimensional model of lanosterol 14α-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 43(13):2493–2505

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Ohira T, Aida K, Nagasawa H (2002) Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone. Peptides 23(9):1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20(19):5678–5698

    Article  CAS  PubMed  Google Scholar 

  • Kosikowska P, Lesner A (2016) Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003–2015). Expert Opin Ther Pat 26(6):689–702

    Article  CAS  PubMed  Google Scholar 

  • Lamrood PY (2009) Specrophotometric semi-micro determination of ergosterol in selected medicinal Indian Phellinus Quél.(Aphyllophoromycetideae) Species. Int J Med Mushrooms 11(3):303–307

    Article  CAS  Google Scholar 

  • Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Lorand T, Kocsis B (2007) Recent advances in antifungal agents. Mini-Rev Med Chem 7(9):900–911

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh JA, Veal DA, Beattie AJ, Gooley AA (1998) Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J Biol Chem 273(11):6139–6143

    Article  CAS  PubMed  Google Scholar 

  • Manzini MC, Perez KR, Riske KA, Bozelli JC Jr, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM (2014) Peptide: lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochim Biophys Acta 1838(7):1985–1999

    Article  CAS  PubMed  Google Scholar 

  • Miller N, Williams GM, Brimble MA (2010) Synthesis of neoglycopeptides via click chemistry. Int J Pept Res Ther 16(3):125–132

    Article  CAS  Google Scholar 

  • Mozsolits H, Wirth HJ, Werkmeister J, Aguilar MI (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta 1512(1):64–76

    Article  CAS  PubMed  Google Scholar 

  • Palma-Guerrero J, Lopez-Jimenez JA, Perez-Berna AJ, Huang IC, Jansson HB, Salinas J, Villalain J, Read ND, Lopez-Llorca LV (2010) Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol Microbiol 75(4):1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Papo N, Shai Y (2003a) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Papo N, Shai Y (2003b) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42(2):458–466

    Article  CAS  PubMed  Google Scholar 

  • Prates MV, Sforça ML, Regis WC, Leite JR, Silva LP, Pertinhez TA, Araújo AL, Azevedo RB, Spisni A, Bloch C (2004) The NMR-derived solution structure of a new cationic antimicrobial peptide from the skin secretion of the anuran Hyla punctata. J Biol Chem 279(13):13018–13026

    Article  CAS  PubMed  Google Scholar 

  • Rad MN, Behrouz S, Behrouz M, Sami A, Mardkhoshnood M, Zarenezhad A, Zarenezhad E (2016) Design, synthesis and biological evaluation of novel 1,2,3-triazolyl [Formula: see text]-hydroxy alkyl/carbazole hybrid molecules. Mol Divers 20(3):705–718

    Article  CAS  PubMed  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41(14):2596–2599

    Article  CAS  PubMed  Google Scholar 

  • Seitz O (2000) Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. ChemBioChem 1(4):214–246

    Article  CAS  PubMed  Google Scholar 

  • Sforça ML, Oyama S, Canduri F, Lorenzi CC, Pertinhez TA, Konno K, Souza BM, Palma MS, Ruggiero Neto J, Azevedo WF (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43(19):5608–5617

    Article  PubMed  Google Scholar 

  • Sgherri C, Porta A, Castellano S, Pinzino C, Quartacci MF, Calucci l (2014) Effects of azole treatments on the physical properties of Candida albicans plasma membrane: a spin probe epr study. Biochim Biophys Acta Biomembr 1838(1):465–473

    Article  CAS  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635

    Article  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from CD spectra: comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Anal Biochem 287(2):252–260

    Article  CAS  PubMed  Google Scholar 

  • Sreerama N, Woody RW (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci 13(1):100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart JCM (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104(1):10–14

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Becker ML (2014) “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 43(20):7013–7039

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi Y, Nagashima M, Shibanushi T, Iwata A, Kangawa Y, Inui F, Siu WJ, Pillai R, Nishiyama Y (2013) Mechanism of action of efinaconazole, a novel triazole antifungal agent. Antimicrob Agents Chemother 57(5):2405–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel M, Schriek P, Prochnow P, Albada HB, Metzler-Nolte N, Bandow JE (2016) Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Biochim Biophys Acta 1858(5):1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Rao R (2010) Beyond ergosterol: linking pH to antifungal mechanisms. Virulence 1(6):551–554

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

EFCJ, FCLA and LLP acknowledge Grants from UFVJM and CNPq. CFRCG, JDSF, LLF and RJA acknowledge Grants from CNPq. This work is a collaboration research project of members of the Rede Mineira de Química (RQ-MG) supported by FAPEMIG (Project: CEX-RED-00010-14). We also acknowledge financial support from FAPEMIG, CAPES, PRPq-UFMG and PRPPG-UFVJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo M. Verly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was sponsored by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM). This work is a collaboration research project of members of the Rede Mineira de Química (RQ-MG) supported by FAPEMIG (Project: CEX-RED-00010-14) and of the Toxinology Network sponsored by CAPES (Process 230.38.006280/2011-07). CAPES offered a Grant to EFCJ (Master Grant). CNPq offered PhD Grants to CFRCG and LLF and researcher Grants to JDSF and RJA.

Additional information

Handling Editor: T. Langer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junior, E.F.C., Guimarães, C.F.R.C., Franco, L.L. et al. Glycotriazole-peptides derived from the peptide HSP1: synergistic effect of triazole and saccharide rings on the antifungal activity. Amino Acids 49, 1389–1400 (2017). https://doi.org/10.1007/s00726-017-2441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2441-2

Keywords

Navigation