Skip to main content
Log in

Novel DNA/RNA-targeting amino acid beacon for the versatile incorporation at any position within the peptide backbone

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

One-pot tandem synthesis was for the first time applied to attach fluorophore to the amino acid side chain, yielding amino acid ready for peptide coupling at the N-terminus, and also upon activation at the C-terminus. Two new compounds differing only in fluorophore-linker length showed exceptional fluorimetric and CD recognition between DS-RNA and DS-DNA, thus being promising beacons for versatile peptide incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armitage BA (2005) DNA binders and related subjects: cyanine dye-DNA interactions: intercalation, groove binding, and aggregation. Top Curr Chem 253:55–76. doi:10.1007/B100442

    CAS  Google Scholar 

  • Chaires JB, Dattagupta N, Crothers D (1982) Studies on interaction of anthracycline antibiotics and deoxyribonucleic-acid: equilibrium binding-studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 21:3933–3940. doi:10.1021/bi00260a005

    Article  CAS  PubMed  Google Scholar 

  • Crnolatac I, Tumir LM, Lesev NY, Vasilev AA, Deligeorgiev TG, Miskovic K, Glavas-Obrovac L, Vugrek O, Piantanida I (2013) Probing the structural properties of DNA/RNA grooves with sterically restricted phosphonium dyes: screening of dye cytotoxicity and uptake. ChemMedChem 7:1093–1103. doi:10.1002/cmdc.201300085

    Article  Google Scholar 

  • Crnolatac I, Rogan I, Majic B, Tomic S, Deligeorgiev T, Horvat G, Makuc D, Plavec J, Pescitelli GPI, Piantanida I (2016) Small molecule probes finely differentiate between various ds- and ss-DNA and RNA by fluorescence, CD and NMR response. Anal Chim Acta 940:128–135. doi:10.1016/j.aca.2016.08.021

    Article  CAS  PubMed  Google Scholar 

  • Deligeorgiev TG, Zaneva DA, Kim SH, Sabnis RW (1998) Preparation of monomethine cyanine dyes for nucleic acid detection. Dye Pigment 37:205–211. doi:10.1016/S0143-7208(97)80088-5

    Article  CAS  Google Scholar 

  • Deligeorgiev T, Gadjev N, Vasilev A, Drexhage KH, Yarmoluk S (2006) Synthesis of novel monomeric cyanine dyes containing mercapto and thioacetyl substituents for nucleic acid detection. Dye Pigment 7:185–191. doi:10.1016/j.dyepig.2005.05.010

    Article  Google Scholar 

  • Duksi M, Baretic D, Caplar V, Piantanida I (2010) Novel bis-phenanthridine derivatives with easily tunable linkers, study of their interactions with DNA and screening of antiproliferative activity. Eur J Med Chem 45:2671–2676. doi:10.1016/j.ejmech.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  • Duksi M, Baretic D, Piantanida I (2012) Synthesis of the peptide-based phenanthridine-nucleobase conjugates and study of their interactions with ds-DNA. Acta Chim Slov 59:464–472

    CAS  PubMed  Google Scholar 

  • Eriksson M, Nordén B (2001) Linear and circular dichroism of drug-nucleic acid complexes. Methods Enzymol 340:68–98

    Article  CAS  PubMed  Google Scholar 

  • Gore MG (2000) Spectrophotometry and spectrofluorimetry. A practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Hamer FM (1964) The cyanine dyes and related compounds. Interscience Publisher, New York

    Google Scholar 

  • Hong SH, Kwon YC, Jewett M (2014) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2:1–7. doi:10.3389/fchem.2014.00034

    Article  Google Scholar 

  • Houben-Weyl H (2004) Synthesis of peptides and peptidomimetics. In: Murray G, Arthur F, Luis M, Claudio T (eds) Methods in organic chemistry. Thieme Verlag Stuttgart, Stuttgart

    Google Scholar 

  • Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y (1996) Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucl Acids Res 24:4992–4997. doi:10.1093/nar/24.24.4992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Japan Kokai Tokkyo, Koho, (2004) 58 203 432

  • Japan Kokai Tokkyo, Koho (2006) 58 205 144

  • Kubin RF, Fletcher AN (1982) Fuorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Article  Google Scholar 

  • Kummer S, Knoll A, Socher E et al (2011) Fluorescence imaging of influenza H1N1 mRNA in living infected cells using single-chromophore FIT-PNA. Angew Chem Int Ed 50:1931–1934. doi:10.1002/anie.201005902

    Article  CAS  Google Scholar 

  • Malojčić G, Piantanida I, Marinić M, Žinić M, Marjanović M, Kralj M, Pavelić KSH (2005) A novel bis-phenanthridine triamine with pH controlled binding to nucleotides and nucleic acids. Org Biomol Chem 3:4373–4381. doi:10.1039/B509094f

    Article  PubMed  Google Scholar 

  • Matić J, Lidija T, Marijana RS, Piantanida I (2016) Advances in peptide-based DNA/RNA-intercalators. Curr Protein Pept Sci 17:127–134. doi:10.2174/138920371702160209124439

    Article  PubMed  Google Scholar 

  • McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489

    Article  CAS  PubMed  Google Scholar 

  • Meguellati K, Koripelly G, Ladame S (2010) DNA-templated synthesis of trimethine cyanine dyes: a versatile fluorogenic reaction for sensing G-quadruplex formation. Angew Chem Int Ed 49:2738–2742. doi:10.1002/anie.201000291

    Article  CAS  Google Scholar 

  • Mergny JL, Lacroix L (2003) Analysis of thermal melting curves. Oligonucleotides 13:515–537. doi:10.1089/154545703322860825

    Article  CAS  PubMed  Google Scholar 

  • Miller JN (1981) Standards for fluorescence spectrometry. Chapman and Hall, London

    Book  Google Scholar 

  • Nygren J, Svanvik N, Kubista M (1998) The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46:39–51. doi:10.1002/(Sici)1097-0282(199807)46:1<39:Aid-Bip4>3.0.Co;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Oh KJ, Cash KJ, Plaxco K (2009) Beyond molecular beacons: optical sensors based on the binding-induced folding of proteins and polypeptides. Chem-Eur J 15:2244–2251. doi:10.1002/chem.200701748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascal R, Sola R (1998) Preservation of the Fmoc protective group under alkaline conditions by using CaC12. Applications in peptide synthesis. Tetrahedron Lett 39:5031–5034

    Article  CAS  Google Scholar 

  • Pazos E, Vazquez O, Mascarenas JL, Vazquez M (2009) Peptide-based fluorescent biosensors. Chem Soc Rev 38:3348–3359. doi:10.1039/b908546g

    Article  CAS  PubMed  Google Scholar 

  • Rodger A, Norden B (1997) Circular dichroism and linear dichroism. Oxford University Press, New York

    Google Scholar 

  • Rosch U, Yao S, Wortmann R, Würthner F (2006) Fluoresceut H-aggregates of merocyanine dyes. Angew Chem Int Ed 45:7026–7030. doi:10.1002/anie.200602286

    Article  Google Scholar 

  • Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  • Silverman RB (2004) The organic chemistry of drug design and drug action. Elsevier Academic Press, New York

    Google Scholar 

  • Socher E, Jarikote DV, Knoll A, Roglin L, Burmeister J, Seitz O (2008) FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem 375:318–330. doi:10.1016/j.ab.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  • Trost BM, Rudd M (2003) Chemoselectivity of the ruthenium-catalyzed hydrative diyne cyclization: total synthesis of (+)-cylindricine C, D, and E. Org Lett 5:4599–4602. doi:10.1021/ol035752n

    Article  CAS  PubMed  Google Scholar 

  • Tumir LM, Crnolatac I, Deligeorgiev T, Vasilev A, Kaloyanova S, Branilovic MG, Tomic S, Piantanida I (2012) Kinetic differentiation between homo- and alternating AT DNA by sterically restricted phosphonium dyes. Chem A Eur J 18:3859–3864. doi:10.1002/chem.201102968

    Article  CAS  Google Scholar 

  • Vasilyeva E, Lam B, Fang ZC, Minden MD, Sargent EH, Kelley S (2011) Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. Angew Chem Int Ed 50:4137–4141. doi:10.1002/anie.201006793

    Article  CAS  Google Scholar 

  • Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D (1993) The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry 32:4098–4104

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Zou Y, Li CY, Sicking W, Piantanida I, Yi T, Schmuck C (2012) A molecular peptide beacon for the ratiometric sensing of nucleic acids. J Am Chem Soc 134:1958–1961. doi:10.1021/Ja2103845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Croatian Science Foundation project 1477. Special thanks go to Prof. Todor Deligeorgiev and Dr. Atanas Kurutos for fruitful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Piantanida.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Responsible Editor: Dr. Fernando Albericio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šmidlehner, T., Piantanida, I. Novel DNA/RNA-targeting amino acid beacon for the versatile incorporation at any position within the peptide backbone. Amino Acids 49, 1381–1388 (2017). https://doi.org/10.1007/s00726-017-2438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2438-x

Keywords

Navigation