Amino Acids

, Volume 49, Issue 7, pp 1159–1167 | Cite as

The repertoire of bitter taste receptor genes in canids

  • Shuai Shang
  • Xiaoyang Wu
  • Jun Chen
  • Huanxin Zhang
  • Huaming Zhong
  • Qinguo Wei
  • Jiakuo Yan
  • Haotian Li
  • Guangshuai Liu
  • Weilai Sha
  • Honghai ZhangEmail author
Review Article


Bitter taste receptors (Tas2rs) play important roles in mammalian defense mechanisms by helping animals detect and avoid toxins in food. Although Tas2r genes have been widely studied in several mammals, minimal research has been performed in canids. To analyze the genetic basis of Tas2r genes in canids, we first identified Tas2r genes in the wolf, maned wolf, red fox, corsac fox, Tibetan fox, fennec fox, dhole and African hunting dog. A total of 183 Tas2r genes, consisting of 118 intact genes, 6 partial genes and 59 pseudogenes, were detected. Differences in the pseudogenes were observed among nine canid species. For example, Tas2r4 was a pseudogene in the dog but might play a functional role in other canid species. The Tas2r42 and Tas2r10 genes were pseudogenes in the maned wolf and dhole, respectively, and the Tas2r5 and Tas2r34 genes were pseudogenes in the African hunting dog; however, these genes were intact genes in other canid species. The differences in Tas2r pseudogenes among canids might suggest that the loss of intact Tas2r genes in canid species is species-dependent. We further compared the 183 Tas2r genes identified in this study with Tas2r genes from ten additional carnivorous species to evaluate the potential influence of diet on the evolution of the Tas2r gene repertoire. Phylogenetic analysis revealed that most of the Tas2r genes from the 18 species intermingled across the tree, suggesting that Tas2r genes are conserved among carnivores. Within canids, we found that some Tas2r genes corresponded to the traditional taxonomic groupings, while some did not. PIC analysis showed that the number of Tas2r genes in carnivores exhibited no positive correlation with diet composition, which might be due to the limited number of carnivores included in our study.


Bitter taste receptor gene Tas2r Canid species Phylogenetic analysis PIC 



Bitter taste receptor


Polymerase chain reaction




Bayesian tree


Phylogenetically independent contrasts



This study was supported by the following grants: the Special Fund for Forest Scientific Research in the Public Welfare (No. 201404420) and the National Natural Science Fund of China (Nos. 31372220, 31172119).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research was approved by the Qufu Normal University Institutional Animal Care and Use Committee (permit number: QFNU2015-003). The fur samples were obtained from specimens. All of the blood samples were obtained during routine health monitoring. This study caused no harm to the seven canid species, and its results may help us to better protect these animals.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

726_2017_2422_MOESM1_ESM.docx (640 kb)
Supplementary material 1-1 (DOCX 639 kb)
726_2017_2422_MOESM2_ESM.xlsx (11 kb)
Supplementary material 1-2 (XLSX 10 kb)
726_2017_2422_MOESM3_ESM.txt (110 kb)
Supplementary material 2 (TXT 109 kb)
726_2017_2422_MOESM4_ESM.xlsx (100 kb)
Supplementary material 3 (XLSX 100 kb)
726_2017_2422_MOESM5_ESM.docx (43 kb)
Supplementary material 4 (DOCX 42 kb)
726_2017_2422_MOESM6_ESM.png (1.2 mb)
Supplementary material 5 (PNG 1245 kb)


  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105. doi: 10.1093/bioinformatics/bti263 CrossRefPubMedGoogle Scholar
  2. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702. doi: 10.1016/s0092-8674(00)80705-9 CrossRefPubMedGoogle Scholar
  3. Bachmanov AA, Beauchamp GK (2007) Taste receptor genes. Annu Rev Nutr 27:389–414. doi: 10.1146/annurev.nutr.26.061505.111329 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Behrens M, Korsching SI, Meyerhof W (2014) Tuning properties of avian and frog bitter taste receptors dynamically fit gene repertoire sizes. Mol Biol Evol 31:3216–3227. doi: 10.1093/molbev/msu254 CrossRefPubMedGoogle Scholar
  5. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJP (2000) T2Rs function as bitter taste receptors. Cell 100:703–711. doi: 10.1016/s0092-8674(00)80706-0 CrossRefPubMedGoogle Scholar
  6. Chen K, Durand D, Farach-Colton M (2000) NOTUNG: a program for dating gene duplications and optimizing gene family trees. J Computational Biol 7:429–447. doi: 10.1089/106652700750050871 CrossRefGoogle Scholar
  7. Conte C, Ebeling M, Marcuz A, Nef P, Andres-Barquin PJ (2002) Identification and characterization of human taste receptor genes belonging to the Tas2r family. Cytogenet Genome Res 98:45–53. doi: 10.1159/000068546 CrossRefPubMedGoogle Scholar
  8. Conte C, Ebeling M, Marcuz A, Nef P, Andres-Barquin PJ (2003) Evolutionary relationships of the Tas2r receptor gene families in mouse and human. Physiol Genom 14:73–82. doi: 10.1152/physiolgenomics.00060.2003 CrossRefGoogle Scholar
  9. da Silva EC, de Jager N, Burgos-Paz W, Reverter A, Perez-Enciso M, Roura E (2014) Characterization of the porcine nutrient and taste receptor gene repertoire in domestic and wild populations across the globe. BMC Genom 15:1057. doi: 10.1186/1471-2164-15-1057 CrossRefGoogle Scholar
  10. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi: 10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dong D, Jones G, Zhang S (2009) Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evol Biol 9:12. doi: 10.1186/1471-2148-9-12 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: 10.2307/2408678 CrossRefPubMedGoogle Scholar
  14. Go Y (2006) Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Mol Biol Evol 23:964–972. doi: 10.1093/molbev/msj106 CrossRefPubMedGoogle Scholar
  15. Go Y, Satta Y, Takenaka O, Takahata N (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170:313–326. doi: 10.1534/genetics.104.037523 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695–W699. doi: 10.1093/nar/gkq313 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hayakawa T, Suzuki-Hashido N, Matsui A, Go Y (2014) Frequent expansions of the bitter taste receptor gene repertoire during evolution of mammals in the Euarchontoglires clade. Mol Biol Evol 31:2018–2031. doi: 10.1093/molbev/msu144 CrossRefPubMedGoogle Scholar
  18. Hillier LWM, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MA, Delany ME, Dodgson JB (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716. doi: 10.1038/nature03154
  19. Hu LL (2009) Latest advances on the studies of function and evolution of bitter taste receptor gene (T2R) family. Chin Sci Bull 54:2472–2482. doi: 10.1360/972009-1142 CrossRefGoogle Scholar
  20. Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA 109:4956–4961. doi: 10.1073/pnas.1118360109 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Johnson-Delaney CA (2014) Ferret nutrition. Vet Clin North Am Exot Anim Pract 17:449–470. doi: 10.1016/j.cvex.2014.05.008 CrossRefPubMedGoogle Scholar
  22. Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1:270–272. doi: 10.1089/152791600459894 CrossRefGoogle Scholar
  23. Lei W, Ravoninjohary A, Li X, Margolskee RF, Reed DR, Beauchamp GK, Jiang P (2015) Functional analyses of bitter taste receptors in domestic cats (Felis catus). PLoS One 10:e0139670. doi: 10.1371/journal.pone.0139670 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li D, Zhang J (2014) Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol 31:303–309. doi: 10.1093/molbev/mst219 CrossRefPubMedGoogle Scholar
  25. Liu Z, Liu G, Hailer F, Orozco-Terwengel P, Tan X, Tian J, Yan Z, Zhang B, Ming L (2016) Dietary specialization drives multiple independent losses and gains in the bitter taste gene repertoire of Laurasiatherian mammals. Front Zool 13:28. doi: 10.1186/s12983-016-0161-1 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M (2010) The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170. doi: 10.1093/chemse/bjp092 CrossRefPubMedGoogle Scholar
  27. Monteiro Ferreira A, Tomas Marques A, Bhide M, Cubric-Curik V, Hollung K, Knight CH, Raundrup K, Lippolis J, Palmer M, Sales-Baptista E, Araujo SS, de Almeida AM (2015) Sequence analysis of bitter taste receptor gene repertoires in different ruminant species. PLoS One 10:e0124933. doi: 10.1371/journal.pone.0124933 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Motta-Junior JC, Talamoni SA, Lombardi JA, Simokomaki K (1996) Diet of the maned wolf, Chrysocyon brachyurus, in central Brazil. J Zool 240:277–284. doi: 10.1111/j.1469-7998.1996.tb05284.x CrossRefGoogle Scholar
  29. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  30. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  31. Roudnitzky N, Behrens M, Engel A, Kohl S, Thalmann S, Hubner S, Lossow K, Wooding SP, Meyerhof W (2015) Receptor polymorphism and genomic structure interact to shape bitter taste perception. PLoS Genet 11:e1005530. doi: 10.1371/journal.pgen.1005530 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300. doi: 10.1093/molbev/msj028 CrossRefPubMedGoogle Scholar
  33. Shi P, Zhang J, Yang H, Zhang YP (2003) Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol 20:805–814. doi: 10.1093/molbev/msg083 CrossRefPubMedGoogle Scholar
  34. Syed AS, Korsching SI (2014) Positive Darwinian selection in the singularly large taste receptor gene family of an ‘ancient’ fish, Latimeria chalumnae. BMC Genom 15:650. doi: 10.1186/1471-2164-15-650 CrossRefGoogle Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Thiemann GW, Iverson SJ, Stirling I (2008) Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecol Monogr 78(4):591–613CrossRefGoogle Scholar
  37. Valkenburgh BV (1989) Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution. Springer, New York, pp 410–436CrossRefGoogle Scholar
  38. Valkenburgh BV (1991) Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17:340–362. doi: 10.1017/S0094837300010691 CrossRefGoogle Scholar
  39. Van VB, Wang X, Damuth J (2004) Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306:101–104. doi: 10.1126/science.1102417 CrossRefGoogle Scholar
  40. Wang K, Zhao H (2015) Birds generally carry a small repertoire of bitter taste receptor genes. Genome Biol Evol 7:2705–2715. doi: 10.1093/gbe/evv180 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang X, Tedford RH, Taylor BE (1999) Phylogenetic systematics of the Borophaginae (Carnivora, Canidae). Bull Am Mus Nat Hist 243:1–391Google Scholar
  42. Wang GD, Zhai W, Yang HC, Wang L, Zhong L, Liu YH, Fan RX, Yin TT, Zhu CL, Poyarkov AD, Irwin DM, Hytonen MK, Lohi H, Wu CI, Savolainen P, Zhang YP (2016) Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res 26:21–33. doi: 10.1038/cr.2015.147 CrossRefPubMedGoogle Scholar
  43. Yarmolinsky DA, Zuker CS, Ryba NJ (2009) Common sense about taste: from mammals to insects. Cell 139:234–244. doi: 10.1016/j.cell.2009.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhao F, Zhang T, Xie J, Zhang S, Nevo E, Su J, Lin G (2016) Genetic variation in bitter taste receptor genes influences the foraging behavior of plateau zokor (Eospalax baileyi). Ecol Evol 6:2359–2367. doi: 10.1002/ece3.2041 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Shuai Shang
    • 1
    • 2
  • Xiaoyang Wu
    • 1
  • Jun Chen
    • 1
  • Huanxin Zhang
    • 2
  • Huaming Zhong
    • 1
  • Qinguo Wei
    • 1
  • Jiakuo Yan
    • 1
  • Haotian Li
    • 1
    • 3
  • Guangshuai Liu
    • 1
  • Weilai Sha
    • 1
  • Honghai Zhang
    • 1
    Email author
  1. 1.College of Life ScienceQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.College of Marine Life SciencesOcean University of ChinaQingdaoPeople’s Republic of China
  3. 3.Marine CollegeShandong UniversityWeihaiPeople’s Republic of China

Personalised recommendations