Amino Acids

, Volume 49, Issue 7, pp 1193–1202 | Cite as

Low plasma homoarginine concentration is associated with high rates of all-cause mortality in renal transplant recipients

  • Arslan Arinc Kayacelebi
  • Isidor Minović
  • Erik Hanff
  • Anne-Roos S. Frenay
  • Martin H. de Borst
  • Martin Feelisch
  • Harry van Goor
  • Stephan J. L. Bakker
  • Dimitrios TsikasEmail author
Original Article


In renal transplant recipients (RTR), we recently found that low urinary excretion of homoarginine (hArg) is associated with mortality and graft failure. However, it is not known whether such prospective associations also hold true for plasma concentrations of hArg. In the present study, we therefore determined plasma concentrations of hArg in the same cohort, i.e. in 687 RTR (functioning graft ≥1 year), and in 140 healthy donors, before and after kidney donation. Plasma hArg concentrations were significantly lower in RTR compared to healthy controls [1.24 (0.95–1.63) µM vs. 1.58 (1.31–2.03) µM, P < 0.001], and kidney donation resulted in a decrease in plasma hArg concentration to 1.41 (1.10–1.81) µM (P < 0.001). In RTR, multivariable linear regression analysis revealed BMI (β = 0.124), heart rate (β = −0.091), pre-emptive transplantation (β = 0.078), antidiabetic medication (β = −0.091), eGFR (β = 0.272), plasma PTH (β = −0.098), uric acid (β = 0.137), alkaline phosphatase (β = −0.100), HDL (β = −0.111), NT-pro-BNP (β = −0.166), and urinary urea excretion (β = 0.139) as main determinants of plasma hArg (all P < 0.05). In RTR, plasma hArg concentration was inversely associated with all-cause [hazard ratio (HR) 0.59 (95% CI 0.50–0.70), P < 0.001] and cardiovascular mortality [HR 0.50 (0.39–0.66), P < 0.001], both expressed per standard deviation change in log-transformed hArg, independent of potential confounders. To conclude, our results suggest that the kidney is a major hArg production site and an important modulator of hArg homeostasis in the renal and cardiovascular systems. Moreover, low plasma hArg is independently associated with increased risk of cardiovascular mortality in RTR, which corroborates the cardiovascular importance of preserving kidney function after transplantation.


Cardiovascular risk Transplantation Graft survival Kidney 



Asymmetric dimethylarginine


l-Arginine:l-glycine amidinotransferase


Body surface area


Body mass index


Confidence interval


Estimated glomerular filtration rate


Glycine amidinotransferase




Hazard ratio


Interquartile range


Kidney transplantation


Nitric oxide


Nitric oxide synthase


N-terminal pro-hormone of brain natriuretic peptide


Parathyroid hormone


Quality control


Renal transplant recipients



This work was supported by Grants from the Dutch Kidney Foundation (NSN C08-2254, P13-114), by COST Action BM1005: ENOG: European Network on Gasotransmitters (, and by the Top Institute Food and Nutrition (A-1003).

Compliance with ethical standards

Ethical statement

The Institutional Review Board approved the study protocol (METc 2008/186), which was in adherence to the Declaration of Helsinki.

Conflict of interest

All authors report no conflicts of interest.


  1. Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS et al (2016) Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 110:408–418CrossRefPubMedGoogle Scholar
  2. Atzler D, Rosenberg M, Anderssohn M et al (2013) Homoarginine—an independent marker of mortality in heart failure. Int J Cardiol 168:4907–4909CrossRefPubMedGoogle Scholar
  3. Atzler D, Gore MO, Ayers CR et al (2014) Homoarginine and cardiovascular outcome in the population-based Dallas Heart Study. Arterioscler Thromb Vasc Biol 34:2501–2507CrossRefPubMedGoogle Scholar
  4. Atzler D, Schönhoff M, Cordts K, Ortland I, Hoppe J, Hummel FC, Gerloff C, Jaehde U, Jagodzinski A, Böger RH, Choe CU, Schwedhelm E (2016) Oral supplementation with l-homoarginine in young volunteers. Br J Clin Pharmacol. doi: 10.1111/bcp.13068 PubMedGoogle Scholar
  5. Bernstein HG, Jäger K, Dobrowolny H, Steiner J, Keilhoff G, Bogerts B, Laube G (2015) Possible sources and functions of L-homoarginine in the brain: review of the literature and own findings. Amino Acids 47:1729–1740CrossRefPubMedGoogle Scholar
  6. Bretscher LE, Li H, Poulos TL, Griffith OW (2003) Structural characterization and kinetics of nitric-oxide synthase inhibition by novel N5-(iminoalkyl)- and N5-(iminoalkenyl)-ornithines. J Biol Chem 278:46789–46797CrossRefPubMedGoogle Scholar
  7. Drechsler C, Meinitzer A, Pilz S et al (2011) Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur J Heart Fail 13:852–859CrossRefPubMedPubMedCentralGoogle Scholar
  8. Drechsler C, Kollerits B, Meinitzer A et al (2013) Homoarginine and progression of chronic kidney disease: results from the Mild to Moderate Kidney Disease Study. PLoS One 8:e63560CrossRefPubMedPubMedCentralGoogle Scholar
  9. Drechsler C, Pihlstrøm H, Meinitzer A, Pilz S, Tomaschitz A, Abedini S, Fellstrom B, Jardine AG, Wanner C, März W, Holdaas H (2015) Homoarginine and clinical outcomes in renal transplant recipients: results from the assessment of lescol in renal transplantation study. Transplantation 99:1470–1476CrossRefPubMedGoogle Scholar
  10. Frenay AR, van den Berg E, de Borst MH, Beckmann B, Tsikas D, Feelisch M, Navis G, Bakker SJL, van Goor H (2015a) Plasma ADMA associates with all-cause mortality in renal transplant recipients. Amino Acids 47:1941–1949CrossRefPubMedPubMedCentralGoogle Scholar
  11. Frenay AR, Kayacelebi AA, Beckmann B, Soedamah SS, de Borst MH, van den Berg E, van Goor H, Bakker SJL, Tsikas D (2015b) High urinary homoarginine excretion is associated with low rates of all-cause mortality in renal transplant recipients. Amino Acids 47:1827–1836CrossRefPubMedGoogle Scholar
  12. Haghikia A, Yanchev GR, Kayacelebi AA, Hanff E, Bledau N, Widera C, Sonnenschein K, Haghikia A, Weissenborn K, Bauersachs J, Bavendiek U, Tsikas D (2017) The role of l-arginine/l-homoarginine/nitric oxide pathway for aortic distensibility and intima-media thickness in stroke patients. Amino Acids. doi: 10.1007/s00726-017-2409-2 PubMedGoogle Scholar
  13. Hanff E, Kayacelebi AA, Herrmann C, Obermann M, Das AM, Tsikas D (2016) Unaltered l-arginine/NO pathway in a MELAS patient: is mitochondrial NO synthase involved in the MELAS syndrome? Int J Cardiol 223:479–481CrossRefPubMedGoogle Scholar
  14. Hecker M, Walsh DT, Vane JR (1991) On the substrate specificity of nitric oxide synthase. FEBS Lett 294:221–224CrossRefPubMedGoogle Scholar
  15. Jones SP, Bolli R (2006) The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 40:16–23CrossRefPubMedGoogle Scholar
  16. Kayacelebi AA, Nguyen TH, Neil C et al (2014a) Homoarginine and 3-nitrotyrosine in patients with takotsubo cardiomyopathy. Int J Cardiol 173:546–547CrossRefPubMedGoogle Scholar
  17. Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014b) GC-MS and GC-MS/MS measurement of the cardiovascular risk factor homoarginine in biological samples. Amino Acids 46:2205–2217CrossRefPubMedGoogle Scholar
  18. Kleber ME, Seppala I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, Raitoharju E, Lyytikainen LP, Makela KM, Laaksonen R, Kahonen M, Raitakari OT, Huang J, Kienreich K, Fahrleitner-Pammer A, Drechsler C, Krane V, Boehm BO, Koenig W, Wanner C, Lehtimaki T, Marz W, Meinitzer A (2013) Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circ Cardiovasc Genet 6:505–513CrossRefPubMedGoogle Scholar
  19. Kopple JD, Greene T, Chumlea WC et al (2000) Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int 57:1688–1703CrossRefPubMedGoogle Scholar
  20. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612CrossRefPubMedPubMedCentralGoogle Scholar
  21. Marescau B, Nagels G, Possemiers I, De Broe ME, Becaus I, Billiouw JM, Lornoy W, De Deyn PP (1997) Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism 46:1024–1031CrossRefPubMedGoogle Scholar
  22. März W, Meinitzer A, Drechsler C et al (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975CrossRefPubMedGoogle Scholar
  23. Moali C, Boucher JL, Sari MA et al (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-l-arginine. Biochemistry 37:10453–10460CrossRefPubMedGoogle Scholar
  24. Molnar MZ, Kovesdy CP, Bunnapradist S et al (2011) Associations of pretransplant serum albumin with post-transplant outcomes in kidney transplant recipients. Am J Transplant 11:1006–1015CrossRefPubMedPubMedCentralGoogle Scholar
  25. Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012CrossRefPubMedGoogle Scholar
  26. O’Connor PM, Cowley AW Jr (2010) Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep 12:86–92CrossRefPubMedPubMedCentralGoogle Scholar
  27. Passauer J, Pistrosch F, Bussemaker E (2005) Nitric oxide in chronic renal failure. Kidney Int 67:1665–1667CrossRefPubMedGoogle Scholar
  28. Pilz S, Meinitzer A, Tomaschitz A et al (2011a) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97:1222–1227CrossRefPubMedGoogle Scholar
  29. Pilz S, Tomaschitz A, Meinitzer A et al (2011b) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42:1132–1134CrossRefPubMedGoogle Scholar
  30. Pilz S, Edelmann F, Meinitzer A et al (2014) Associations of methylarginines and homoarginine with diastolic dysfunction and cardiovascular risk factors in patients with preserved left ventricular ejection fraction. J Card Fail 20:923–930CrossRefPubMedGoogle Scholar
  31. Pilz S, Meinitzer A, Gaksch M, Grübler M, Verheyen N, Drechsler C, Hartaigh BÓ, Lang F, Alesutan I, Voelkl J, März W, Tomaschitz A (2015) Homoarginine in the renal and cardiovascular systems. Amino Acids 47:1703–1713CrossRefPubMedGoogle Scholar
  32. Ravani P, Maas R, Malberti F et al (2013) Homoarginine and mortality in pre-dialysis chronic kidney disease (CKD) patients. PLoS One 8:e72694CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rettkowski O, Wienke A, Hamza A et al (2007) Low body mass index in kidney transplant recipients: risk or advantage for long-term graft function? Transplant Proc 39:1416–1420CrossRefPubMedGoogle Scholar
  34. Sasso S, Dalmedico L, Magro DD, Pereira EM, Wyse AT, de Lima DD (2015) Differential in vitro effects of homoarginine on oxidative stress in plasma, erythrocytes, kidney and liver of rats in the absence and in the presence alpha-tocopherol, ascorbic acid or L-NAME. Amino Acids 47:1931–1939CrossRefPubMedGoogle Scholar
  35. Takahashi T, Harris RC (2014) Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J Diabetes Res 2014:590541CrossRefPubMedPubMedCentralGoogle Scholar
  36. The Hague: Dutch food composition table (NEVO 2006) NEVO table 2006 (dutch nutrient databank: NEVO table 2006)Google Scholar
  37. Tomaschitz A, Meinitzer A, Pilz S et al (2014) Homoarginine, kidney function and cardiovascular mortality risk. Nephrol Dial Transplant 29:663–671CrossRefPubMedGoogle Scholar
  38. Tomaschitz A, Verheyen N, Gaksch M, Meinitzer A, Pieske B, Kraigher-Krainer E, Colantonio C, März W, Schmidt A, Belyavskiy E, Rus-Machan J, van Ballegooijen AJ, Stiegler C, Amrein K, Ritz E, Fahrleitner-Pammer A, Pilz S (2015) Homoarginine in patients with primary hyperparathyroidism. Am J Med Sci 349:306–311CrossRefPubMedGoogle Scholar
  39. Tsikas D, Wu G (2015) Homoarginine, arginine, and relatives: analysis, metabolism, transport, physiology, and pathology. Amino Acids 47:1697–1702CrossRefPubMedGoogle Scholar
  40. Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC (2000) Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett 478:1–3CrossRefPubMedGoogle Scholar
  41. van den Berg E, Engberink MF, Brink EJ et al (2012a) Dietary acid load and metabolic acidosis in renal transplant recipients. Clin J Am Soc Nephrol 7:1811–1818CrossRefPubMedPubMedCentralGoogle Scholar
  42. van den Berg E, Geleijnse JM, Brink EJ et al (2012b) Sodium intake and blood pressure in renal transplant recipients. Nephrol Dial Transplant 27:3352–3359CrossRefPubMedGoogle Scholar
  43. van den Berg E, Engberink MF, Brink EJ et al (2013) Dietary protein, blood pressure and renal function in renal transplant recipients. Br J Nutr 109:1463–1470CrossRefPubMedGoogle Scholar
  44. van den Berg E, Pasch A, Westendorp WH et al (2014) Urinary sulfur metabolites associate with a favorable cardiovascular risk profile and survival benefit in renal transplant recipients. J Am Soc Nephrol 25:1303–1312CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wu G, Bazer FW, Davis TA et al (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168CrossRefPubMedGoogle Scholar
  46. Wyse AT, Bavaresco CS, Hagen ME, Delwing D, Wannmacher CM, Severo Dutra-Filho C et al (2001) In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia. Brain Res 923:50–57CrossRefPubMedGoogle Scholar
  47. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213PubMedGoogle Scholar
  48. Xia Z, Vanhoutte PM (2011) Nitric oxide and protection against cardiac ischemia. Curr Pharm Des 17:1774–1782CrossRefPubMedGoogle Scholar
  49. Yang Z, Ming XF (2006) Endothelial arginase: a new target in atherosclerosis. Curr Hypertens Rep 8:54–59CrossRefPubMedGoogle Scholar
  50. Zoccali C (2006) Traditional and emerging cardiovascular and renal risk factors: an epidemiologic perspective. Kidney Int 70:26–33CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Arslan Arinc Kayacelebi
    • 1
  • Isidor Minović
    • 2
  • Erik Hanff
    • 1
  • Anne-Roos S. Frenay
    • 3
  • Martin H. de Borst
    • 2
  • Martin Feelisch
    • 4
  • Harry van Goor
    • 3
  • Stephan J. L. Bakker
    • 2
  • Dimitrios Tsikas
    • 1
    Email author
  1. 1.Centre of Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
  2. 2.NephrologyUniversity Medical Center Groningen and University of GroningenGroningenThe Netherlands
  3. 3.Pathology and Medical BiologyUniversity Medical Center Groningen and University of GroningenGroningenThe Netherlands
  4. 4.Clinical and Experimental Sciences, Faculty of Medicine, NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK

Personalised recommendations