Amino Acids

, Volume 49, Issue 7, pp 1169–1175 | Cite as

Suppression of Th1 differentiation by tryptophan supplementation in vivo

  • Tobias V. LanzEmail author
  • Simon Becker
  • Soumya R. Mohapatra
  • Christiane A. Opitz
  • Wolfgang Wick
  • Michael Platten
Original Article


Metabolism of the essential amino acid tryptophan (trp) is a key endogenous immunosuppressive pathway restricting inflammatory responses. Tryptophan metabolites promote regulatory T cell (Treg) differentiation and suppress proinflammatory T helper cell (Th)1 and Th17 phenotypes. It has been shown that treatment with natural and synthetic tryptophan metabolites can suppress autoimmune neuroinflammation in preclinical animal models. Here, we tested if oral intake of tryptophan would increase immunosuppressive tryptophan metabolites and ameliorate autoimmune neuroinflammation as a safe approach to treat autoimmune disorders like multiple sclerosis (MS). Without oral supplementation, systemic kynurenine levels decrease during the initiation phase of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, indicating systemic activation of tryptophan metabolism. Daily oral gavage of up to 10 mg/mouse/day was safe and increased serum kynurenine levels by more than 20-fold for more than 3 h after the gavage. While this treatment resulted in suppression of myelin-specific Th1 responses, there was no relevant impact on clinical disease activity. These data show that oral trp supplementation at subtoxic concentrations suppresses antigen-specific Th1 responses, but suggest that the increase in trp metabolites is not sustained enough to impact neuroinflammation.


Neuroinflammation Tryptophan Kynurenine Indolamine-2,3-dioxygenase Experimental autoimmune encephalomyelitis Multiple sclerosis 



This work was supported by the German Research Foundation (DFG, SFB938, TPK, FOR2289, P8, Z1) to MP and WW, the German Cancer Aid (Deutsche Krebshilfe, 110392) to MP, the Helmholtz Association (Helmholtz-Gesellschaft) to MP, the Heidelberg University Innovation Fund FRONTIER to MP, the Hertie Foundation (Hertie-Stiftung) to WW and the Postdoc Fellowship Program of the Medical Faculty of the University of Heidelberg to TVL.

Compliance with ethical standards

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed under the permission of the “Regierungspräsidium” in Karlsruhe, Germany, and the “Tierlaborausschuss” of the German Cancer Research Center (DKFZ) in Heidelberg, Germany. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Brooks AK, Lawson MA, Smith RA et al (2016) Interactions between inflammatory mediators and corticosteroids regulate transcription of genes within the Kynurenine Pathway in the mouse hippocampus. J Neuroinflammation 13:98. doi: 10.1186/s12974-016-0563-1 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Campesan S, Green EW, Breda C et al (2011) The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol 21:961–966. doi: 10.1016/j.cub.2011.04.028 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fallarino F, Vacca C, Orabona C et al (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14:65–68CrossRefPubMedGoogle Scholar
  4. FDA (2005) Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Pharmacol Toxicol 1–27Google Scholar
  5. Forrest CM, Mackay GM, Stoy N et al (2004) Tryptophan loading induces oxidative stress. Free Radic Res 38:1167–1171. doi: 10.1080/10715760400011437 CrossRefPubMedGoogle Scholar
  6. George CF, Millar TW, Hanly PJ, Kryger MH (1989) The effect of l-tryptophan on daytime sleep latency in normals: correlation with blood levels. Sleep 12:345–353CrossRefPubMedGoogle Scholar
  7. Glassman AH, Platman SR (1969) Potentiation of a monoamine oxidase inhibitor by tryptophan. J Psychiatr Res 7:83–88CrossRefPubMedGoogle Scholar
  8. Gullino P, Winitz M, Birnbaum SM et al (1956) Studies on the metabolism of amino acids and related compounds in vivo. I. Toxicity of essential amino acids, individually and in mixtures, and the protective effect of l-arginine. Arch Biochem Biophys 64:319–332CrossRefPubMedGoogle Scholar
  9. Herrington RN, Bruce A, Johnstone EC (1974) Comparative trial of l-tryptophan and E.C.T. in severe depressive illness. Lancet 2:731–734CrossRefPubMedGoogle Scholar
  10. Heuther G, Hajak G, Reimer A et al (1992) The metabolic fate of infused l-tryptophan in men: possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites. Psychopharmacology 109:422–432CrossRefPubMedGoogle Scholar
  11. Hyyppä MT, Falck SC (1977) l-tryptophan and neuroendocrine regulation in neurologic patients: gonadotrophin secretion, sexual motivation and responsiveness during l-tryptophan treatment in patients with multiple sclerosis (MS). Psychoneuroendocrinology 2:359–363CrossRefPubMedGoogle Scholar
  12. Inglis JJ, Criado G, Andrews M et al (2007) The anti-allergic drug, N-(3“,4-”dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis. Rheumatology 46:1428–1432. doi: 10.1093/rheumatology/kem160 CrossRefPubMedGoogle Scholar
  13. Jäger A, Dardalhon V, Sobel RA et al (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183:7169–7177. doi: 10.4049/jimmunol.0901906 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Keil M, Sonner JK, Lanz TV et al (2016) General control non-derepressible 2 (GCN2) in T cells controls disease progression of autoimmune neuroinflammation. J Neuroimmunol 297:117–126. doi: 10.1016/j.jneuroim.2016.05.014 CrossRefPubMedGoogle Scholar
  15. Kwidzinski E, Bunse J, Aktas O et al (2005) Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 19:1347–1349. doi: 10.1096/fj.04-3228fje PubMedGoogle Scholar
  16. Lanz TV, Williams SK, Stojic A et al (2017) Tryptophan-2,3-Dioxygenase (TDO) deficiency is associated with subclinical neuroprotection in a mouse model of multiple sclerosis. Sci Rep 7:41271. doi: 10.1038/srep41271 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Metz R, Rust S, DuHadaway JB et al (2012) IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by d-1-methyl-tryptophan. Oncoimmunology 1:1460–1468. doi: 10.4161/onci.21716 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mezrich JD, Fechner JH, Zhang X et al (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198. doi: 10.4049/jimmunol.0903670 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Michael AF, Drummond KN, Doeden D et al (1964) Tryptophan metabolism in man. J Clin Invest 43:1730–1746. doi: 10.1172/JCI105048 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Muller AJ, Sharma MD, Chandler PR et al (2008) Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc Natl Acad Sci USA 105:17073–17078. doi: 10.1073/pnas.0806173105 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Munn DH, Zhou M, Attwood JT et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193CrossRefPubMedGoogle Scholar
  22. Munn DH, Sharma MD, Baban B et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642. doi: 10.1016/j.immuni.2005.03.013 CrossRefPubMedGoogle Scholar
  23. Nguyen NT, Kimura A, Nakahama T et al (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107:19961–19966. doi: 10.1073/pnas.1014465107 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Obrenovitch TP, Urenjak J (2000) In vivo assessment of kynurenate neuroprotective potency and quinolinate excitotoxicity. Amino Acids 19:299–309CrossRefPubMedGoogle Scholar
  25. Ohira K, Hagihara H, Toyama K et al (2010) Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus. Mol Brain 3:26. doi: 10.1186/1756-6606-3-26 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Opitz CA, Wick W, Steinman L, Platten M (2007) Tryptophan degradation in autoimmune diseases. Cell Mol Life Sci 64:2542–2563. doi: 10.1007/s00018-007-7140-9 CrossRefPubMedGoogle Scholar
  27. Opitz CA, Litzenburger UM, Sahm F et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203. doi: 10.1038/nature10491 CrossRefPubMedGoogle Scholar
  28. Orsini H, Araujo LP, Maricato JT et al (2014) GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice. Brain Behav Immun 37:177–186. doi: 10.1016/j.bbi.2013.12.012 CrossRefPubMedGoogle Scholar
  29. Pilotte L, Larrieu P, Stroobant V et al (2012) Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 109:2497–2502. doi: 10.1073/pnas.1113873109 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Platten M, Ho PP, Youssef S et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855. doi: 10.1126/science.1117634 CrossRefPubMedGoogle Scholar
  31. Platten M, Wick W, Van den Eynde BJ (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 72:5435–5440. doi: 10.1158/0008-5472.CAN-12-0569 CrossRefPubMedGoogle Scholar
  32. Quintana FJ, Basso AS, Iglesias AH et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71. doi: 10.1038/nature06880 CrossRefPubMedGoogle Scholar
  33. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661. doi: 10.1096/fj.07-9574LSF CrossRefPubMedGoogle Scholar
  34. Sainio EL, Sainio P (1990) Comparison of effects of nicotinic acid or tryptophan on tryptophan 2,3-dioxygenase in acute and chronic studies. Toxicol Appl Pharmacol 102:251–258CrossRefPubMedGoogle Scholar
  35. Sakurai K, Zou J-P, Tschetter JR et al (2002) Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 129:186–196CrossRefPubMedGoogle Scholar
  36. Sandyk R (1992) L-tryptophan in neuropsychiatric disorders: a review. Int J Neurosci 67:127–144CrossRefPubMedGoogle Scholar
  37. Terness P, Bauer TM, Röse L et al (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457. doi: 10.1084/jem.20020052 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Urenjak J, Obrenovitch TP (2000) Neuroprotective potency of kynurenic acid against excitotoxicity. NeuroReport 11:1341–1344CrossRefPubMedGoogle Scholar
  39. Veldhoen M, Hirota K, Westendorf AM et al (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109. doi: 10.1038/nature06881 CrossRefPubMedGoogle Scholar
  40. Walker AK, Budac DP, Bisulco S et al (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38:1609–1616. doi: 10.1038/npp.2013.71 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yan Y, Zhang G-X, Gran B et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185:5953–5961. doi: 10.4049/jimmunol.1001628 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Young SN, St-Arnaud-McKenzie D, Sourkes TL (1978) Importance of tryptophan pyrrolase and aromatic amino acid decarboxylase in the catabolism of tryptophan. Biochem Pharmacol 27:763–767CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor ImmunologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of Neurology and National Center for Tumor DiseasesUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Division of Immunology and Rheumatology, Department of MedicineStanford University School of MedicineStanfordUSA
  4. 4.Brain Cancer MetabolismGerman Cancer Research Center (DKFZ)HeidelbergGermany
  5. 5.DKTK Clinical Cooperation Unit NeurooncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  6. 6.Department of NeurologyUniversity Medical Center Mannheim, Heidelberg UniversityMannheimGermany

Personalised recommendations