Skip to main content

Advertisement

Log in

Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Cationic peptides proved fundamental importance as pharmaceutical agents and/or drug carrier moieties functioning in cellular processes. The comparison of the in vitro activity of these peptides is an experimental challenge and a combination of different methods, such as cytotoxicity, internalisation rate, haemolytic and antibacterial effect, is necessary. At the same time, several issues need to be addressed as the assay conditions have a great influence on the measured biological effects and the experimental setup needs to be optimised. Therefore, critical comparison of results from different assays using representative examples of cell penetrating and antimicrobial peptides was performed and optimal test conditions were suggested. Our main goal was to identify carrier peptides for drug delivery systems of antimicrobial drug candidates. Based on the results of internalisation, haemolytic, cytotoxic and antibacterial activity assays, a classification of cationic peptides is advocated. We found eight promising carrier peptides with good penetration ability of which Penetratin, Tat, Buforin and Dhvar4 peptides showed low adverse haemolytic effect. Penetratin, Transportan, Dhvar4 and the hybrid CM15 peptide had the most potent antibacterial activity on Streptococcus pneumoniae (MIC lower than 1.2 μM) and Transportan was effective against Mycobacterium tuberculosis as well. The most selective peptide was the Penetratin, where the effective antimicrobial concentration on pneumococcus was more than 250 times lower than the HC50 value. Therefore, these peptides and their analogues will be further investigated as drug delivery systems for antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by the Hungarian Research Fund (115431 and 104275) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (bo_87_15). The authors thank Dr. Hedvig Medzihradszky-Schweiger for the amino acid analysis and Mr. Sándor Dávid for the antimycobacterial testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilvia Bősze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the Hungarian Research Fund (115431 and 104275) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (bo_87_15).

Informed consent

The authors confirm that this work is new and original and not under consideration elsewhere. Our institute, the MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, and all authors have agreed to the submission of this manuscript.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: M. S. Palma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváti, K., Bacsa, B., Mlinkó, T. et al. Comparative analysis of internalisation, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup. Amino Acids 49, 1053–1067 (2017). https://doi.org/10.1007/s00726-017-2402-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-017-2402-9

Keywords

Navigation