Skip to main content

Advertisement

Log in

Dietary oxidized tyrosine (O-Tyr) stimulates TGF-β1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Oxidized tyrosine (O-Tyr) products have been detected in commercial food and have been demonstrated to induce liver injury in our previous study, but the precise mechanisms of the impact induced by dietary O-Tyr are still unclear. Kidney plays an important role in the metabolism of protein. Accumulation of O-Tyr products, especially the dityrosine (Dityr) and advanced oxidation protein products (AOPPs), in vivo was shown to be associated with many kidney diseases. Therefore, this study determined whether chronic exposure to dietary O-Tyr impaired renal function in rats. After O-Tyr treatment for 24 weeks, rats exhibited oxidative stress and protein oxidation in the kidneys, accompanied with inflammatory reaction and renal dysfunction. Elevated extracellular matrix (ECM) contents and the histological examination (HE and Masson stain) results indicated renal fibrosis. The Real-time PCR and Western blotting assay showed that O-Tyr activated phosphorylation of JNK/p38 and up-regulated the expression of transforming growth factor-β1 (TGF-β1) and Smad 2/3. These results suggest that dietary O-Tyr could induce oxidative stress, inflammation and renal fibrosis through JNK/p38/TGF-β1 signaling pathway. Dityr (accounting for 22 % of the total O-Tyr material) may be responsible for the O-Tyr-induced injury. This study also provides a modified procedure for separation and purification of Dityr, the main oxidized product in O-Tyr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

AOPPs:

Advanced oxidized protein products

BUN:

Blood urea nitrogen

CAT:

Catalase

Dityr:

Dityrosine

ECM:

Extracellular matrix

GPX:

Glutathione peroxidase

HE:

Hematoxylin-eosin

HA:

Hyaluronic acid

ICTP:

Procollagen type I carboxy terminal peptide

IL:

Interleukin

LN:

Laminin

LOX:

Lipid oxidation

MDA:

Malondialdehyde

OPPs:

Oxidized protein products

PIIINP:

Type III procollagen peptide

PC:

Protein carbonyl

P-JNK:

Phosphorylation of JNK

P-p38:

Phosphorylation of p38

POX:

Protein oxidation

ROS:

Reduced oxygen species

SOD:

Superoxide dismutase

SCr:

Serum creatinine

T-AOC:

Total antioxidant capacity

UV:

Urine volume

References

  • Benani A, Troy S, Carmona MC, Fioramonti X, Lorsignol A et al (2007) Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 56:152–160

    Article  CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein Oxidation in Aging, Disease, and Oxidative Stress. J Biol Chem 272(33):20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Beyerlein A, Von Kries R (2011) Breastfeeding and body composition in children: will there ever be conclusive empirical evidence for a protective effect against overweight? Am J Clin Nutr 94:1772S–1775S

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Hou FF, Nie J (2014) AOPPs and the progression of kidney disease. Kidney Int Suppl (2011) 4(1):102–106

    Article  CAS  Google Scholar 

  • Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ (2012) L-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol 238(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zheng X, Song Y, Qu L, Tang J et al (2016) Apocynin attenuates renal fibrosis via inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats. Free Radic Res 50(8):840–852

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard TK, Nielsen JH, Brown BE, Stadler N (2011) Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation. J Agric Food Chem 59:7939–7947

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703(2):93–109

    Article  CAS  PubMed  Google Scholar 

  • Descamps-Latscha B, Witko-Sarsat V (2001) Importance of oxidatively modified proteins in chronic renal failure. Kidney Int Suppl 78:S108–S113

    Article  CAS  PubMed  Google Scholar 

  • Dunlop RA, Main BJ, Rodgers KJ (2015) The deleterious effects of non-protein amino acids from desert plants on human and animal health. J Arid Environ 112:152–158

    Article  Google Scholar 

  • EI-Shafei MM, Al-Amoudy NS, Said AK (1988) Effect of the drying process on the nutritive value of milk. Nahrung 32:553–557

    Article  Google Scholar 

  • Esterbauer H, Muskiet F, Horrobin DF (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:779S–786S

    CAS  PubMed  Google Scholar 

  • Estévez M, Luna C (2016) Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr 29:0

    Article  Google Scholar 

  • Feeney MB, Schöneich C (2012) Tyrosine modifications in aging. Antioxid Redox Signal 17:1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenaille F, Parisod V, Vuichoud J, Tabet JC, Guy PA (2004) Quantitative determination of dityrosine in milk powders by liquid chromatography coupled to tandem mass spectrometry using isotope dilution. J Chromatogr A 1052:77–84

    Article  CAS  PubMed  Google Scholar 

  • Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57(6):1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi Y (2008) Immunohistochemical detection of oxidative stress biomarkers, dityrosine and N-(hexanoyl)lysine, and c-reactive protein in rabbit atherosclerotic lesions. J Atheroscler Thromb 15:185–192

    Article  CAS  PubMed  Google Scholar 

  • Gui S, Li B, Zhao X, Sheng L, Hong J et al (2013) Renal injury and Nrf2 modulation in mouse kidney following chronic exposure to TiO(2) nanoparticles. J Agric Food Chem 61:8959–8968

    Article  CAS  PubMed  Google Scholar 

  • Gurer-Orhan H, Ercal N, Mare S et al (2006) Misincorporation of free m-tyrosine into cellular proteins: a potential cytotoxic mechanism for oxidized amino acids. Biochem J 395(2):277–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggins TG, Wells-Knechy MC, Detorie NA, Baynes JW (1993) Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem 268:12341–12347

    CAS  PubMed  Google Scholar 

  • Kim YH, Huff-Lonergan E, Sebraek JG, Lonergan SM (2010) High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci 85:759–767

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Gil-Guzman E, Mahranetal AM (2001) Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl 22(4):568–574

    CAS  PubMed  Google Scholar 

  • Kuo CW, Shen CJ, Tung YT, Chen HL, Chen YH et al (2015) Extracellular superoxide dismutase ameliorates streptozotocin-induced rat diabetic nephropathy via inhibiting the ROS/ERK1/2 signaling. Life Sci 135:77–86

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi T, Miyazaki A, Suwan S, Isobe M (2001) Extensive Investigations on Oxidized Amino Acid Residues in H2O2-Treated Cu, Zn-SOD Protein with LC-ESI-Q-TOF-MS, MS/MS for the Determination of the Copper-Binding Site. J Am Chem Soc 123:9268–9278

    Article  CAS  PubMed  Google Scholar 

  • Latimer HR, Veal EA (2016) Peroxiredoxins in regulation of MAPK signaling pathways; sensors and barriers to signal transduction. Mol Cells 39(1):40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence MC, Jivan A, Shao C, Duan L, Goad D et al (2008) The roles of MAPKs in disease. Cell Res 18(4):436–442

    Article  CAS  PubMed  Google Scholar 

  • Leloup C, Magnan C, Benani A, Bonnet E, Alquier T et al (2006) Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55:2084–2090

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Hou FF, Zhang X, Chen PY, Liu SX et al (2007) Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol 18:528–538

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Mo L, Le G, Shi Y (2014) Oxidized casein impairs antioxidant defense system and induces hepatic and renal injury in mice. Food Chem Toxicol 64:86–93

    Article  CAS  PubMed  Google Scholar 

  • Li ZL, Shi Y, Le G, Ding Y, Zhao Q (2016) 24 Weeks Exposure to Oxidized Tyrosine (O-Tyr) Induces Hepatic Fibrosis Involving Activation of the MAPK/TGFβ1 Signaling Pathway in Sprague-Dawley Rats Model. Oxidative Medicine and Cellular Longevity 2016:3123294

    PubMed  Google Scholar 

  • Lund MN, Heinonen M, Baron CP, Estèvez M (2011) Protein oxidation in muscle foods: a review. Mol Nutr Food Res 55:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ma FY, Tesch GH, Nikolic-Paterson DJ (2014) ASK1/p38 signaling in renal tubular epithelial cells promotes renal fibrosis in the mouse obstructed kidney. Am J Physiol Renal Physiol 307(11):F1263–F1273

    Article  CAS  PubMed  Google Scholar 

  • Malencik DA, Anderson SR (2003) Dityrosine as a product of oxidative stress and fluorescent probe. Amino Acids 25:233–247

    Article  CAS  PubMed  Google Scholar 

  • Moghal A, Hwang L, Faull K, Ibba M (2016) Multiple quality control pathways limit non-protein amino acid use by yeast cytoplasmic phenylalanyl-tRNA synthetase. J Biol Chem 291(30):15796–15805

    Article  CAS  PubMed  Google Scholar 

  • Morrissey PA, Sheehy PJ, Galvin K, Kerry JP, Buckley DJ (1998) Lipid stability in meat and meat products. Meat Sci 49S1:S73–S86

  • Nie J, Hou FF (2012) Role of reactive oxygen species in the renal fibrosis. Chin Med J (Engl) 125(14):2598–2602

    CAS  Google Scholar 

  • Poulianiti KP, Kaltsatou A, Mitrou G, Jamurtas AZ, Koutedakis Y et al (2016) Systemic redox imbalance in chronic kidney disease: a systematic review. Oxid Med Cell Longev 2016:8598253

    Article  PubMed  PubMed Central  Google Scholar 

  • Ran Y, Yan B, Li Z, Ding Y, Shi Y, Le G (2016) Dityrosine administration induces novel object recognition deficits in young adulthood mice. Physiol Behav 164:292–299

    Article  CAS  PubMed  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato-Horiguchi C, Ogawa D, Wada J (2012) Telmisartan attenuates diabetic nephropathy by suppressing oxidative stress in db/db mice. Nephron Exp Nephrol 121:97–108

    Article  Google Scholar 

  • Scheidegger D, Radici PM, Vergara-Roig VA, Bosio NS, Pesce SF et al (2013) Evaluation of milk powder quality by protein oxidative modifications. J Dairy Sci 96:3414–3423

    Article  CAS  PubMed  Google Scholar 

  • Sebeková K, Klenovicsová K, Ferenczová J (2012) Advanced oxidation protein products and advanced glycation end products in children and adolescents with chronic renal insufficiency. J Ren Nutr 22(1):143–148

    Article  PubMed  Google Scholar 

  • Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2006) Chemical modification of proteins by reactive oxygen species. In: Dalle-Donne I, Scaloni A, Butterfield DA (eds) Redox proteomics: from protein modifications to cellular dysfunction and diseases. Wiley Interscience, New York, pp 3–23

    Google Scholar 

  • Szijártó IA, Molnár GA, Mikolás E et al (2014) Elevated vascular level of ortho-tyrosine contributes to the impairment of insulin-induced arterial relaxation. Horm Metab Res 46(11):749–752

    Article  PubMed  Google Scholar 

  • Tbahriti HF, Messaoudi A, Kaddous A (2014) The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress. Ann Cardiol Angeiol 63(3):135–139

    Article  CAS  Google Scholar 

  • Tong M, Longato L, de la Monte SM (2010) Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 10:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Utrera M, Estévez M (2012) Oxidation of myofibrillar proteins and impaired functionality: underlying mechanisms of the carbonylation pathway. J Agric Food Chem 60:8002–8011

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liang M, Xu J (2014) Renal expression of advanced oxidative protein products predicts progression of renal fibrosis in patients with IgA nephropathy. Lab Invest 94(9):966–977

    Article  CAS  PubMed  Google Scholar 

  • Witko-Sarsat V, Gausson V, Nguyen AT (2003) AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patient. Kidney Int 64:82–91

    Article  CAS  PubMed  Google Scholar 

  • Xiong YL, Blanchard SP, Ooizumi T, Ma Y (2010) Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein. J Food Sci 75:C215–C221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our deepest gratitude to all those people whose kindness and advice have made this work possible. We especially thank Prof. Charles Shoemaker (University of California, Davis) for his effective advice and encouragement. We thank Dr. Xue Tang, Dr. Xiangrong Cheng and Dr. Biao Yan in our lab for their help in the experimental result analysis. We thank Dr. Hui Pan (Shanghai Jiao Tong University) for her continuing help of downloading references related to our study. We also thank Malik Muhammad Umair (School of Textile and Clothing, Jiangnan University) for the language help in this paper. This work is supported by the Open Project Program of State Key Laboratory of Food Science and Technology, Jiangnan University, China (No. SKLF-ZZB-201609), the National Natural Science Foundation of China (No. 30571347 and No. 31571841),and the Fundamental Research Funds for the Central Universities (JUSRP111A36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Le.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: S. L. Parker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.L., Shi, Y., Ding, Y. et al. Dietary oxidized tyrosine (O-Tyr) stimulates TGF-β1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys. Amino Acids 49, 241–260 (2017). https://doi.org/10.1007/s00726-016-2353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2353-6

Keywords

Navigation