Skip to main content
Log in

Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Auricchio S, De Ritis G, De Vincenzi M, Mancini E, Minetti M, Sapora O, Silano V (1984) Agglutinating activity of gliadin-derived peptides from bread wheat: implications for coeliac disease pathogenesis. Biochem Biophys Res Com 121:428–433

    Article  CAS  PubMed  Google Scholar 

  • Auricchio S, De Ritis G, De Vincenzi M, Gentile V, Maiuri L, Mancini E, Porta R, Raia V (1990) Amines protect in vitro the celiac small intestine from the damaging activity of gliadin peptides. Gastroenterology 99:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Badarau E, Wang Z, Rathbone DL, Costanzi A, Thibault T, Murdoch CE, El Alaoui S, Bartkeviciute M, Griffin M (2015) Development of potent and selective tissue transglutaminase inhibitors: their effect on TG2 function and application in pathological conditions. Chem Biol 22:1347–1361

    Article  CAS  PubMed  Google Scholar 

  • Bergamini CM, Dondi A, Lanzara V, Squerzanti M, Cervellati C, Montin K, Mischiati C, Tasco G, Collighan R, Griffin M, Casadio R (2010) Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids 39:297–304

    Article  CAS  PubMed  Google Scholar 

  • Bergamini CM, Collighan RJ, Wang Z, Griffin M (2011) Structure and regulation of type 2 transglutaminase in relation to its physiological functions and pathological roles. Adv Enzymol Relat Areas Mol Biol 78:1–46

    CAS  PubMed  Google Scholar 

  • Caputo I, Barone MV, Lepretti M, Martucciello S, Nista I, Troncone R, Auricchio S, Sblattero D, Esposito C (2010) Celiac anti-tissue transglutaminase antibodies interfere with the uptake of alpha gliadin peptide 31-43 but not of peptide 57-68 by epithelial cells. Biochim Biophys Acta 1802:717–727

    Article  CAS  PubMed  Google Scholar 

  • Cervellati C, Montin K, Squerzanti M, Mischiati C, Ferrari C, Spinozzi F, Mariani P, Amenitsch H, Bergamini CM, Lanzara V (2012) Effects of the regulatory ligands calcium and GTP on the thermal stability of tissue transglutaminase. Amino Acids 42:2233–2242

    Article  CAS  PubMed  Google Scholar 

  • Chladkova B, Kamanova J, Palova Jelinkova L, Cinova J, Sebo P, Tuckova L (2011) Gliadin fragments promote migration of dendritic cells. J Cell Mol Med 15:938–948

    Article  CAS  PubMed  Google Scholar 

  • Cordella-Miele E, Miele L, Beninati S, Mukherjee AB (1993) Transglutaminase-catalyzed incorporation of polyamines into phospholipase A2. J Biochem 113:164–173

    Article  CAS  PubMed  Google Scholar 

  • Dewar DH, Ciclitira P (2005) Clinical features and diagnosis of celiac disease. Gastroenterology 128:S19–S24

    Article  PubMed  Google Scholar 

  • Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801

    Article  CAS  PubMed  Google Scholar 

  • Dieterich W, Esslinger B, Trapp D, Hahn E, Huff T, Seilmeier W, Wieser H, Schuppan D (2006) Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 55:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorum S, Arntzen MO, Qiao SW, Holm A, Koehler CJ, Thiede B, Sollid LM, Fleckenstein B (2010) The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes. PLoS One 5:e14056

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrè Castany MA, Kocna P, Tlaskalova-Hogenova H (1995) Binding of gliadin to lymphoblastoid, myeloid and epithelial cell lines. Folia Microbiol (Praha) 40:431–435

    Article  Google Scholar 

  • Fiorucci S, Zacharias M (2010) Binding site prediction and improved scoring during flexible protein-protein docking with ATTRACT. Proteins 78:3131–3139

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein B, Molberg O, Qiao SW, Schmid DG, von der Mülbe F, Elgstoen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277:34109–34116

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein B, Qiao SW, Larsen MR, Jung G, Roepstorff P, Sollid LM (2004) Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides. J Biol Chem 279:17607–17616

    Article  CAS  PubMed  Google Scholar 

  • Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Mongeot A, Collighan R, Saint RE, Jones RA, Coutts IG, Rathbone DL (2008) Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett 18:5559–5562

    Article  CAS  PubMed  Google Scholar 

  • Hodrea J, Demeny MA, Majai G, Sarang Z, Korponay-Szabo IR, Fesus L (2010) Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett 130:74–81

    Article  CAS  PubMed  Google Scholar 

  • Inczedy J, Lengyel T, Ure AM (2002) Compendium of analytical nomenclature, definitive rules 1997. International Union of Pure and Applied Chemistry (IUPAC), Web edition

  • Jang TH, Lee DS, Choi K, Jeong EM, Kim IG, Kim YW, Chun JN, Jeon JH, Park HH (2014) Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site. PLoS One 9:e107005

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozzio BB, Lozzio CB, Bamberger EG, Feliu AS (1981) A multipotential leukemia cell line (K562) of human origin. Exp Biol Med 166:546–550

    Article  CAS  Google Scholar 

  • Mischiati C, Sereni A, Lampronti I, Bianchi N, Borgatti M, Prus E, Fibach E, Gambari R (2004) Rapamycin-mediated induction of gamma-globin mRNA accumulation in human erythroid cells. Br J Haematol 126:612–621

    Article  CAS  PubMed  Google Scholar 

  • Mischiati C, Ura B, Roncoroni L, Elli L, Cervellati C, Squerzanti M, Conte D, Doneda L, Polverino de Laureto P, de Franceschi G, Calza R, Barrero CA, Merali S, Ferrari C, Bergamini CM, Agostinelli E (2015) Changes in protein expression in two cholangiocarcinoma cell lines undergoing formation of multicellular tumor spheroids in vitro. PLoS One 10:e0118906

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitkevich OV, Shainoff JR, DiBello PM, Yee VC, Teller DC, Smejkal GB, Bishop PD, Kolotushkina IS, Fickenscher K, Samokhin GP (1998) Coagulation factor XIIIa undergoes a conformational change evoked by glutamine substrate. Studies on kinetics of inhibition and binding of XIIIA by a cross-reacting antifibrinogen antibody. J Biol Chem 273:14387–14391

    Article  CAS  PubMed  Google Scholar 

  • Mohler WA, Charlton CA, Blau HM (1996) Spectrophotometric quantitation of tissue culture cell number in any medium. Biotechniques 21:260–266

    CAS  PubMed  Google Scholar 

  • Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberhuber G, Granditsh G, Vogelsang H (1999) The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 11:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5:e327

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauhavirta T, Lindfors K, Koskinen O, Laurila K, Kurppa K, Saavalainen P, Mäki M, Collin P, Kaukinen K (2014) Impaired epithelial integrity in the duodenal mucosa in early stages of celiac disease. Transl Res 164:223–231

    Article  CAS  PubMed  Google Scholar 

  • Saladin A, Rey J, Thévenet P, Zacharias M, Moroy G, Tufféry P (2014) PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res 42:W221–W226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C (2008) Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3:e1861

    Article  PubMed  PubMed Central  Google Scholar 

  • Silano M, Vincentini O, Luciani A, Felli C, Caserta S, Esposito S, Villella VR, Pettoello-Mantovani M, Guido S, Maiuri L (2012) Early tissue transglutaminase-mediated response underlies K562(S)-cell gliadin-dependent agglutination. Pediatr Res 71:532–538

    Article  CAS  PubMed  Google Scholar 

  • Skovbjerg H, Noren O, Anthonsen D, Moller J, Sjostrom H (2002) Gliadin is a good substrate of several transglutaminases: possible implication in the pathogenesis of coeliac disease. Scand J Gastroenterol 37:812–817

    Article  CAS  PubMed  Google Scholar 

  • Skovbjerg H, Hansen GH, Niels-Christiansen LL, Anthonsen D, Ascher H, Midhagen G, Hallert C, Noren O, Sjostrom H (2004a) Intestinal tissue transglutaminase in coeliac disease of children and adults: ultrastructural localization and variation in expression. Scand J Gastroenterol 39:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Skovbjerg H, Koch C, Anthonsen D, Sjostrom H (2004b) Deamidation and cross-linking of gliadin peptides by transglutaminases and the relation to celiac disease. Biochim Biophys Acta 1690:220–230

    Article  CAS  PubMed  Google Scholar 

  • Skovbjerg H, Anthonsen D, Knudsen E, Sjostrom H (2008) Deamidation of gliadin peptides in lamina propria: implications for celiac disease. Dig Dis Sci 53:2917–2924

    Article  CAS  PubMed  Google Scholar 

  • Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2:647–655

    Article  CAS  PubMed  Google Scholar 

  • Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285:25402–25409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland JA, Turner AR, Mannoni P, McGann LE, Turc JM (1986) Differentiation of K562 leukemia cells along erythroid, macrophage, and megakaryocyte lineages. J Biol Response Mod 5:250–262

    CAS  PubMed  Google Scholar 

  • Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 283:20937–20947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjon JM, van Bergen J, Koning F (2010) Celiac disease: how complicated can it get? Immunogenetics 62:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlig H, Osman AA, Tanev ID, Viehweg J, Mothes T (1998) Role of tissue transglutaminase in gliadin binding to reticular extracellular matrix and relation to coeliac disease autoantibodies. Autoimmunity 28:185–195

    Article  CAS  PubMed  Google Scholar 

  • van de Wal Y, Kooy YM, van Veelen PA, Pena SA, Mearin LM, Molberg O, Lundin KE, Sollid LM, Mutis T, Benckhuijsen WE, Drijfhout JW, Koning F (1998) Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc Natl Acad Sci USA 95:10050–10054

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Griffin M (2012) TG2, a novel extracellular protein with multiple functions. Amino Acids 42:939–949

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Collighan RJ, Gross SR, Danen EH, Orend G, Telci D, Griffin M (2010) RGD-independent cell adhesion via a tissue transglutaminase-fibronectin matrix promotes fibronectin fibril deposition and requires syndecan-4/2 α5β1 integrin co-signaling. J Biol Chem 285:40212–40229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M (2012) Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. J Biol Chem 287:13063–13083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lesort M, Guttmann RP, Johnson GV (1998) Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273:2288–2295

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann C, Rudloff S, Lochnit G, Arampatzi S, Maison W, Zimmer KP (2014) Epithelial transport of immunogenic and toxic gliadin peptides in vitro. PLoS One 9:e113932

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mischiati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editors: S. Beninati, M. Piacentini, C. M. Bergamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feriotto, G., Calza, R., Bergamini, C.M. et al. Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten. Amino Acids 49, 551–565 (2017). https://doi.org/10.1007/s00726-016-2339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2339-4

Keywords

Navigation