Skip to main content
Log in

Phenosafranin inhibits nuclear localization of transglutaminase 2 without affecting its transamidase activity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TG2) localizes to the nucleus and induces apoptosis through a crosslinking inactivation of Sp1 in JHH-7 cells treated with acyclic retinoid. We screened an inhibitor suppressing transamidase activity in the nucleus without affecting transamidase activity itself. Phenosafranin was found to inhibit nuclear localization of EGFP-tagged TG2 and dose-dependently reduce nuclear transamidase activity without affecting the activity in a tube. We concluded that phenosafranin was a novel TG2 inhibitor capable of suppressing its nuclear localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TG:

Transglutaminase

5BAPA:

5-(Biotinamido) pentylamine

ACR:

Acyclic retinoid

DMEM:

Dulbecco’s modified Eagle medium

PBS:

Phosphate-buffered saline

NLS:

Nuclear localization signal

NES:

Nuclear export signal

NASH:

Non-alcoholic steatohepatitis

ASH:

Alcoholic steatohepatitis

Cys:

Cystamine

References

  • Ballestar E, Abad C, Franco L (1996) Core histones are glutaminyl substrates for tissue transglutaminase. J Biol Chem 271:18817–18824

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94:383–417. doi:10.1152/physrev.00019.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furutani Y, Kojima S (2015) Control of TG functions depending on their localization. In: Hitomi K, Kojima S, Fesus L (eds) Transglutaminases: multiple functional modifiers and targets for new drug discovery, 1st edn. Springer, Tokyo, pp 43–62. doi:10.1007/978-4-431-55825-5_2

  • Haddox MK, Russell DH (1981) Increased nuclear conjugated polyamines and transglutaminase during liver regeneration. Proc Natl Acad Sci USA 78:1712–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89:991–1023. doi:10.1152/physrev.00044.2008

    Article  CAS  PubMed  Google Scholar 

  • Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L (1999) Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96:7388–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato N, Takahashi S, Nogawa T, Saito T, Osada H (2012) Construction of a microbial natural product library for chemical biology studies. Curr Opin Chem Biol 16:101–108. doi:10.1016/j.cbpa.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  • Keillor JW, Apperley KY, Akbar A (2015) Inhibitors of tissue transglutaminase. Trends Pharmacol Sci 36:32–40. doi:10.1016/j.tips.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  • Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S (2012) Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J Cell Physiol 227:1130–1137. doi:10.1002/jcp.22833

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ (2006) Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281:5532–5538. doi:10.1074/jbc.M506864200

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R, Tatsukawa H, Shrestha R, Ishibashi N, Matsuura T, Kagechika H, Kose S, Hitomi K, Imamoto N, Kojima S (2015) Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells. Cell Death Dis 6:e2002. doi:10.1038/cddis.2015.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsukawa H, Fukaya Y, Frampton G, Martinez-Fuentes A, Suzuki K, Kuo TF, Nagatsuma K, Shimokado K, Okuno M, Wu J, Iismaa S, Matsuura T, Tsukamoto H, Zern MA, Graham RM, Kojima S (2009) Role of transglutaminase 2 in liver injury via cross-linking and silencing of transcription factor Sp1. Gastroenterology 136(1783–1795):e1710. doi:10.1053/j.gastro.2009.01.007

    Google Scholar 

  • Tatsukawa H, Sano T, Fukaya Y, Ishibashi N, Watanabe M, Okuno M, Moriwaki H, Kojima S (2011) Dual induction of caspase 3- and transglutaminase-dependent apoptosis by acyclic retinoid in hepatocellular carcinoma cells. Mol Cancer 10:4. doi:10.1186/1476-4598-10-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsukawa H, Furutani Y, Hitomi K, Kojima S (2016) Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 7:e2244. doi:10.1038/cddis.2016.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida T, Hiraga N, Imamura M, Tsuge M, Abe H, Hayes CN, Aikata H, Ishida Y, Tateno C, Yoshizato K, Ohdan H, Murakami K, Chayama K (2015) Human cytotoxic T lymphocyte-mediated acute liver failure and rescue by immunoglobulin in human hepatocyte transplant TK-NOG mice. J Virol 89:10087–10096. doi:10.1128/jvi.01126-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the former laboratory members, including Dr. Tatsukawa (currently Nagoya Univ), Ms. Fukaya-Tatsukawa, Ms. Yoshioka, and Ms. Imazawa for their efforts in an initial screening of this study. JHH-7 cells were kindly gifted by Dr. Matsuura (Jikei Univ School of Med). NPDepo chemical library was kindly gifted by Dr. Osada and Dr. Saito (RIKEN). The authors’ experimental work referred to in this report was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan KAKENHI Grant Number JP26102742 (to SK); The Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP16K09386 (to YF); Advanced Research Networks; and the Research on the Innovative Development and the Practical Application of New Drugs for Hepatitis B (Principal Investigator: SK) provided by the Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Kojima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editors: S. Beninati, M. Piacentini, C. M. Bergamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furutani, Y., Toguchi, M., Shrestha, R. et al. Phenosafranin inhibits nuclear localization of transglutaminase 2 without affecting its transamidase activity. Amino Acids 49, 483–488 (2017). https://doi.org/10.1007/s00726-016-2337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2337-6

Keywords

Navigation