Skip to main content
Log in

Natural structural diversity within a conserved cyclic peptide scaffold

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

We recently isolated and described the evolutionary origin of a diverse class of small single-disulfide bonded peptides derived from Preproalbumin with SFTI-1 (PawS1) proteins in the seeds of flowering plants (Asteraceae). The founding member of the PawS derived peptide (PDP) family is the potent trypsin inhibitor SFTI-1 (sunflower trypsin inhibitor-1) from Helianthus annuus, the common sunflower. Here we provide additional structures and describe the structural diversity of this new class of small peptides, derived from solution NMR studies, in detail. We show that although most have a similar backbone framework with a single disulfide bond and in many cases a head-to-tail cyclized backbone, they all have their own characteristics in terms of projections of side-chains, flexibility and physiochemical properties, attributed to the variety of their sequences. Small cyclic and constrained peptides are popular as drug scaffolds in the pharmaceutical industry and our data highlight how amino acid side-chains can fine-tune conformations in these promising peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SFTI-1:

Sunflower trypsin inhibitor-1

PawS1:

Preproalbumin with SFTI-1

PDP:

PawS-derived peptide

AEP:

Asparaginyl endopeptidase

TOCSY:

Total correlation spectroscopy

NOESY:

Nuclear overhauser effect spectroscopy

DQF-COSY:

Double quantum filtered correlation spectroscopy

HSQC:

Heteronuclear single quantum coherence spectroscopy

RP-HPLC:

Reverse phase high performance liquid chromatography

ESI-MS:

Electrospray ionization mass spectrometry

References

  • Bernath-Levin K, Nelson C, Elliott AG, Jayasena AS, Millar AH, Craik DJ, Mylne JS (2015) Peptide macrocyclization by a bifunctional endoprotease. Chem Biol 22:571–582. doi:10.1016/j.chembiol.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528

    CAS  Google Scholar 

  • Chan LY, Gunasekera S, Henriques ST, Worth NF, Le S-J, Clark RJ, Campbell JH, Craik DJ, Daly NL (2011) Engineering pro-angiogenic peptides using stable disulfide-rich cyclic scaffolds. Blood 118:6709–6717. doi:10.1182/blood-2011-06-359141

    Article  CAS  PubMed  Google Scholar 

  • Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21. doi:10.1107/S0907444909042073

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336. doi:10.1006/jmbi.1999.3383

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Cemazar M, Daly NL (2006) The cyclotides and related macrocyclic peptides as scaffolds in drug design. Curr Opin Drug Disc 9:251–260

    CAS  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147. doi:10.1111/cbdd.12055

    Article  CAS  PubMed  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  • de Veer SJ, Swedberg JE, Akcan M, Rosengren KJ, Brattsand M, Craik DJ, Harris JM (2015) Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition. Biochem J 469:243–253. doi:10.1042/BJ20150412

    Article  PubMed  Google Scholar 

  • Eccles C, Guntert P, Billeter M, Wüthrich K (1991) Efficient analysis of protein 2D NMR spectra using the software package EASY. J Biomol NMR 1:111–130

    Article  CAS  PubMed  Google Scholar 

  • Elliott AG, Delay C, Liu H, Phua Z, Rosengren KJ, Benfield AH, Panero JL, Colgrave ML, Jayasena AS, Dunse KM, Anderson MA, Schilling EE, Ortiz-Barrientos D, Craik DJ, Mylne JS (2014) Evolutionary origins of a bioactive peptide buried within preproalbumin. Plant Cell 26:981–995. doi:10.1105/tpc.114.123620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs AC, Kondejewski LH, Gronwald W, Nip AM, Hodges RS, Sykes BD, Wishart DS (1998) Unusual beta-sheet periodicity in small cyclic peptides. Nat Struct Biol 5:284–288

    Article  CAS  PubMed  Google Scholar 

  • Griesinger C, Sørensen OW, Ernst RR (1987) Practical aspects of the E.COSY technique, measurement of scalar spin-spin coupling constants in peptides. J Magn Reson 75:474–492

    CAS  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298. doi:10.1006/jmbi.1997.1284

    Article  PubMed  Google Scholar 

  • Harris KS, Durek T, Kaas Q, Poth AG, Gilding EK, Conlan BF, Saska I, Daly NL, van der Weerden NL, Craik DJ, Anderson MA (2015) Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nat Commun 6:10199. doi:10.1038/ncomms10199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Huang F, Wilson KA, Tan-Wilson A (2007) Protein storage vacuole acidification as a control of storage protein mobilization in soybeans. J Exp Biol 58:1059–1070. doi:10.1093/jxb/erl267

    CAS  Google Scholar 

  • Hutchinson EG, Thornton JM (1996) PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein Sci 5:212–220. doi:10.1002/pro.5560050204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  • Kessler H, Gehrke M, Lautz J, Kock M, Seebach D, Thaler A (1990) Complexation and medium effects on the conformation of cyclosporin A studied by NMR spectroscopy and molecular dynamics calculations. Biochem Pharmacol 40:169–173

    Article  CAS  PubMed  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:29–32

    Article  Google Scholar 

  • Korsinczky ML, Schirra HJ, Rosengren KJ, West J, Condie BA, Otvos L, Anderson MA, Craik DJ (2001) Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant. J Mol Biol 311:579–591. doi:10.1006/jmbi.2001.4887

    Article  CAS  PubMed  Google Scholar 

  • Korsinczky ML, Clark RJ, Craik DJ (2005) Disulfide bond mutagenesis and the structure and function of the head-to-tail macrocyclic trypsin inhibitor SFTI-1. Biochemistry 44:1145–1153. doi:10.1021/bi048297r

    Article  CAS  PubMed  Google Scholar 

  • Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290:525–533. doi:10.1006/jmbi.1999.2891

    Article  CAS  PubMed  Google Scholar 

  • Mylne JS, Colgrave ML, Daly NL, Chanson AH, Elliott AG, McCallum EJ, Jones A, Craik DJ (2011) Albumins and their processing machinery are hijacked for cyclic peptides in sunflower. Nat Chem Biol 7:257–259. doi:10.1038/nchembio.542

    Article  CAS  PubMed  Google Scholar 

  • Mylne JS, Chan LY, Chanson AH, Daly NL, Schaefer H, Bailey TL, Nguyencong P, Cascales L, Craik DJ (2012) Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis. Plant Cell 24:2765–2778. doi:10.1105/tpc.112.099085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen GK, Wang S, Qiu Y, Hemu X, Lian Y, Tam JP (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738. doi:10.1038/nchembio.1586

    Article  CAS  PubMed  Google Scholar 

  • Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell 18:2567–2581. doi:10.1105/tpc.106.040931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rance M, Sørensen OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K (1983) Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117:479–485

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B, Hogg PJ (2007) Search for allosteric disulfide bonds in NMR structures. BMC Struct Biol 7:49. doi:10.1186/1472-6807-7-49

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45:7429–7433. doi:10.1021/bi0603064

    Article  CAS  PubMed  Google Scholar 

  • Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Protein Res 40:180–193

    Article  PubMed  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS + : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223. doi:10.1007/s10858-009-9333-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swedberg JE, Nigon LV, Reid JC, de Veer SJ, Walpole CM, Stephens CR, Walsh TP, Takayama TK, Hooper JD, Clements JA, Buckle AM, Harris JM (2009) Substrate-guided design of a potent and selective kallikrein-related peptidase inhibitor for kallikrein 4. Chem Biol 16:633–643. doi:10.1016/j.chembiol.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  • Taiz L (1992) The Plant Vacuole. J Exp Biol 172:113–122

    CAS  PubMed  Google Scholar 

  • Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active sites. Chem Rev 105:973–1000. doi:10.1021/cr040669e

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Case DA (2002) Use of chemical shifts in macromolecular structure determination. Method Enzymol 338:3–34. doi:10.1016/S0076-6879(02)38214-4

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgments

A.G.E. and D.A. were awarded Australian Postgraduate Award Scholarships. D.J.C is an Australian Research Council (ARC) Laureate Fellow (FL150100146). J.S.M. and K.J.R. are ARC Future Fellows (FT120100013 and FT130100890 respectively). This work and B.F. were funded by an ARC Discovery Grant (DP120103369) to J.S.M. and K.J.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua S. Mylne or K. Johan Rosengren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: J. Bode.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, A.G., Franke, B., Armstrong, D.A. et al. Natural structural diversity within a conserved cyclic peptide scaffold. Amino Acids 49, 103–116 (2017). https://doi.org/10.1007/s00726-016-2333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2333-x

Keywords

Navigation