Skip to main content

Advertisement

Log in

Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The ability of cancer cells to metastasize represents the most devastating feature of cancer. Currently, there are no specific biomarkers or therapeutic targets that can be used to predict the risk or to treat metastatic cancer. Many recent reports have demonstrated elevated expression of transglutaminase 2 (TG2) in multiple drug-resistant and metastatic cancer cells. TG2 is a multifunctional protein mostly known for catalyzing Ca2+-dependent -acyl transferase reaction to form protein crosslinks. Besides this transamidase activity, many Ca2+-independent and non-enzymatic activities of TG2 have been identified. Both, the enzymatic and non-enzymatic activities of TG2 have been implicated in diverse pathophysiological processes such as wound healing, cell growth, cell survival, extracellular matrix modification, apoptosis, and autophagy. Tumors have been frequently referred to as ‘wounds that never heal’. Based on the observation that TG2 plays an important role in wound healing and inflammation is known to facilitate cancer growth and progression, we discuss the evidence that TG2 can reprogram inflammatory signaling networks that play fundamental roles in cancer progression. TG2-regulated signaling bestows on cancer cells the ability to proliferate, to resist cell death, to invade, to reprogram glucose metabolism and to metastasize, the attributes that are considered important hallmarks of cancer. Therefore, inhibiting TG2 may offer a novel therapeutic approach for managing and treatment of metastatic cancer. Strategies to inhibit TG2-regulated pathways will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnihotri N, Kumar S, Mehta K (2013) Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res 15:R202

    Article  CAS  Google Scholar 

  • Ai L et al (2008) The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis 29:510–518

    Article  CAS  PubMed  Google Scholar 

  • Antonyak MA et al (2001) Effects of tissue transglutaminase on retinoic acid-induced cellular differentiation and protection against apoptosis. J Biol Chem 276:33582–33587

    Article  CAS  PubMed  Google Scholar 

  • Antonyak MA, McNeill CJ, Wakshlag JJ, Boehm JE, Cerione RA (2003) Activation of the Ras-ERK pathway inhibits retinoic acid-induced stimulation of tissue transglutaminase expression in NIH3T3 cells. J Biol Chem 278:15859–15866

    Article  CAS  PubMed  Google Scholar 

  • Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278:4704–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beninati S, Piacentini M (2004) The transglutaminase family: an overview: minireview article. Amino Acids 26:367–372

    CAS  PubMed  Google Scholar 

  • Block KI et al (2015) Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 35:S276–S304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boroughs LK, Antonyak MA, Cerione RA (2014) A novel mechanism by which tissue transglutaminase activates signaling events that promote cell survival. J Biol Chem. 289:10115–10125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KD (2013) Transglutaminase 2 and NF-κB: an odd couple that shapes breast cancer phenotype. Breast Cancer Res Treat 137:329–336

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D (2012) Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 31:2521–2523

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Mehta K (1999) Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell Biol 31:817–836

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZX et al (2011) Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS One 6:e23752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhabra A, Verma A, Mehta K (2009) Tissue transglutaminase promotes or suppresses tumors depending on cell context. Anticancer Res 29:1909–1919

    CAS  PubMed  Google Scholar 

  • Chua HL et al (2007) NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26:711–724

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15:253–260

    Article  PubMed  Google Scholar 

  • Csomos K, Nemet I, Fésüs L, Balajthy Z (2010) Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia. Blood 116:3933–3943

    Article  CAS  PubMed  Google Scholar 

  • Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312:2973–2982

    Article  CAS  PubMed  Google Scholar 

  • Delhase M et al (2012) TANK-binding kinase 1 (TBK1) controls cell survival through PAI-2/serpinB2 and transglutaminase 2. Proc Natl Acad Sci USA 109:177–186

    Article  Google Scholar 

  • Dyer LM et al (2011) The transglutaminase 2 gene is aberrantly hypermethylated in glioma. J Neurooncol 101:429–440

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL et al (2014) Transglutaminase regulation of cell function. Physiol Rev 94:383–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert RL, Fisher ML, Grun D, Adhikary G, Xu W, Kerr C (2015) Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog 54:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdem S et al (2015) The increased transglutaminase 2 expression levels during initial tumorigenesis predict increased risk of metastasis and decreased disease-free and cancer-specific survivals in renal cell carcinoma. World J Urol 33:1553–1560

    Article  CAS  PubMed  Google Scholar 

  • Faye C (2010) Transglutaminase-2: a new endostatin partner in the extracellular matrix of endothelial cells. Biochem J 427:467–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fesus L (1998) Transglutaminase-catalyzed protein cross-linking in the molecular program of apoptosis and its relationship to neuronal processes. Cell Mol Neurobiol 18:683–694

    Article  CAS  PubMed  Google Scholar 

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  CAS  PubMed  Google Scholar 

  • Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579:3297–3302

    Article  PubMed  CAS  Google Scholar 

  • Fesus L, Tarcsa E (1989) Formation of N epsilon-(gamma-glutamyl)-lysine isodipeptide in Chinese-hamster ovary cells. Biochem J 263:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fesus L, Thomazy V, Falus A (1987) Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224:104–108

    Article  CAS  PubMed  Google Scholar 

  • Fischer K et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819

    Article  CAS  PubMed  Google Scholar 

  • Fisher ML, Keillor JW, Xu W, Eckert RL, Kerr C (2015) Transglutaminase is required for epidermal squamous cell carcinoma stem cell survival. Mol Cancer Res 13:1083–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (2006) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res 312:594–607

    Article  CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  • Gentile V, Thomazy V, Piacentini M, Fesus L, Davies PJ (1992) Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion. J Cell Biol 119:463–474

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov S et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Srinivasan R, Nijhawan R, Suri V (2010) Tissue transglutaminase 2 as a biomarker of cervical intraepithelial neoplasia (CIN) and its relationship to p16INK4A and nuclear factor kappaB expression. Virchows Arch 456:45–51

    Article  CAS  PubMed  Google Scholar 

  • Han AL, Kumar S, Fok JY, Tyagi AK, Mehta K (2014) Tissue transglutaminase expression promotes castration-resistant phenotype and transcriptional repression of androgen receptor. Eur J Cancer 50:1685–1696

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hawiger D et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Sun ZL (2015) Silencing of TGM2 reverses epithelial to mesenchymal transition and modulates the chemosensitivity of breast cancer to docetaxel. Exp Therp Med 104:1413–1418

    Google Scholar 

  • Hitomi H, Kojima S, Fesus L (Eds) (2015) Transglutaminases: multiple functional and targets for new drug discovery, Springer

  • Hsu HS et al (2012) Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway. Lung Cancer 75:167–177

    Article  PubMed  Google Scholar 

  • Huang S, Ingber DE (2007) A non-genetic basis for cancer progression and metastasis: self-organizing attractions cell regulatory networks. Breast Disease 26:27–54

    Article  Google Scholar 

  • Huber MA, Beug H, Wirth T (2004a) Epithelial-mesenchymal transition: NF-kappaB takes center stage. Cell Cycle 3:1477–1480

    Article  CAS  PubMed  Google Scholar 

  • Huber MA et al (2004b) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JY et al (2008) Clinical and biological significance of tissue transglutaminase (TG2) in ovarian carcinoma. Cancer Res 68:5849–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JH et al (2013) Transglutaminase 2 expression predicts progression free survival in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitor. J Korean Med Sci 28:1005–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RA (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13:1442–1453

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchan K, Fuxreiter M, Fésüs L (2015) Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 72:3009–3035

    Article  CAS  PubMed  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  CAS  PubMed  Google Scholar 

  • Katsumata N et al (1996) Serum levels of cytokines in patients with untreated primary lung cancer. Clin Cancer Res 2:553–559

    CAS  PubMed  Google Scholar 

  • Katt WP, Antonyak MA, Cerione RA (2015) Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm 12:46–55

    Article  CAS  PubMed  Google Scholar 

  • Kausar T et al (2011) Clinical significance of GPR56, transglutaminase 2, and NF-κB in esophageal squamous cell carcinoma. Cancer Invest 29:42–48

    Article  CAS  PubMed  Google Scholar 

  • Keillor JW, Apperley KYP, Akbar K (2015) Inhibitors of tissue transglutaminase. Chem Biol 22:1347–1361

    Article  CAS  Google Scholar 

  • Kiberstis PA (2016) Metastasis an evolving story. Science 352:163–174

    Google Scholar 

  • Kim Y, Eom S (2010) Transglutaminase II interacts with rac1, regulates production of reactive oxygen species, expression of snail, secretion of Th2 cytokines and mediates in vitro and in vivo allergic inflammation. Mol Immunol 47:1010–1022

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Park SS, Nam BH, Kim IH, Kim SY (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 66:10936–10943

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Park KS, Kim SY (2009) Silencing of TGase 2 sensitizes breast cancer cells to apoptosis by regulation of survival factors. Front Biosci 14:2514–2521

    Article  CAS  Google Scholar 

  • Klöck C, Khosla C (2012) Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Sci 21:1781–1789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knupfer H, Preiss R (2007) Significance of interleukin-6 (IL-6) in breast cancer. Breast Cancer Res Treat 102:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kotiyal S, Bhattacharya S (2014) Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun 453:112–116

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637

    Article  CAS  PubMed  Google Scholar 

  • Ku BM et al (2014a) Transglutaminase 2 inhibitor abrogates renal cell carcinoma in xenograft models. J Cancer Res Clin Oncol 140:757–767

    Article  CAS  PubMed  Google Scholar 

  • Ku BM, Lee CH, Lee SH, Kim SY (2014b) Increased expression of transglutaminase 2 drives glycolytic metabolism in renal carcinoma cells. Amino Acids 46:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Mehta K (2012) Tissue transglutaminase constitutively activates HIF-1α and nuclear factor-κB via non-canonical pathway. PLoS One 7:e49321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A et al (2010) Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 5:e13390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Gao H, Xu J, Reuben J, Yu D, Mehta K (2011) Evidence that aberrant expression of tissue transglutaminase promotes stem cell characteristics in mammary epithelial cells. PLoS One 6:e20701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Xu J, Sung B, Kumar S, Yu D, Aggarwal BB, Mehta K (2012) Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 14:R4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Donti TR, Agnihotri N, Mehta K (2014) Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways. Int J Cancer 134:2798–2807

    Article  CAS  PubMed  Google Scholar 

  • Kuo TF, Tatsukawa H, Kojima S (2011) New insights into the functions and localization of nuclear transglutaminase 2. FEBS J 278:4756–4767

    Article  CAS  PubMed  Google Scholar 

  • Kweon SM et al (2004) Protective role of tissue transglutaminase in the cell death induced by TNF-alpha in SH-SY5Y neuroblastoma cells. J Biochem Mol Biol 37:185–191

    CAS  PubMed  Google Scholar 

  • Lee AS (2014) Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 14:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2015) Tissue transglutaminase mediated tumor-stroma interaction promotes pancreatic cancer progression. Clin Cancer Res 21:4482–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, Chen YJ, Tsai CH, Huang FM, Chang YC (2016) Elevated transglutaminase-2 expression mediates fibrosis in areca quid chewing-associated oral submucosal fibrosis via reactive oxygen species generation. Clin Oral Investig 20:1029–1034

    Article  PubMed  Google Scholar 

  • Leicht DT et al (2014) TGM2: a cell surface marker in esophageal adenocarcinomas. J Thorac Oncol 9:872–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Antonyak MA, Druso JE, Cheng L, Nikitin AY, Cerione RA (2010) EGF potentiated oncogenesis requires a tissue transglutaminase-dependent signaling pathway leading to Src activation. Proc Natl Acad Sci USA 107:1408–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99:2743–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorand L, Graham RM (2005) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  Google Scholar 

  • Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M (2013) The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19:1266–1303

    Article  CAS  PubMed  Google Scholar 

  • Malek E, Jagannathan S, Driscoll JJ (2014) Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 5:8027–8038

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K (2007) Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 26:2459–2570

    Article  CAS  PubMed  Google Scholar 

  • Mann AP et al (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res 66:8788–8795

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F et al (2012) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  Google Scholar 

  • Matic I et al (2010) Characterization of transglutaminase type II role in dendritic cell differentiation and function. J Leukoc Biol 88:181–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta K (1994) High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer 8:400–406

    Article  Google Scholar 

  • Mehta K (2005) Mammalian transglutaminases: a family portrait. Prog Exp Tumor Res 38:1–18

    Article  CAS  PubMed  Google Scholar 

  • Mehta K (2009) Biological and therapeutic significance of tissue transglutaminase in pancreatic cancer. Amino Acids 36:709–716

    Article  CAS  PubMed  Google Scholar 

  • Mehta K (2016) Tranglutaminase 2 and metastasis—how hot is the link? In: Hitomi K, Kojima S, Fesus L (eds) Transglutaminases: multifunctional modifiers and targets for new drug discovery. Springer, Berlin, pp 215–228

    Google Scholar 

  • Mehta K, Han A (2011) Tissue transglutaminase (TG2)-induced inflammation in initiation, progression, and pathogenesis of pancreatic cancer. Cancers 3:897–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta K, Fok J, Miller FR, Koul D, Sahin AA (2004) Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10:8068–8076

    Article  CAS  PubMed  Google Scholar 

  • Mehta K, Fok JY, Mangala LS (2006) Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci 11:173–185

    Article  PubMed  Google Scholar 

  • Mehta K, Kumar A, Kim HI (2010) Transglutaminase 2: a multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 80:1921–1929

    Article  CAS  PubMed  Google Scholar 

  • Min B et al (2015) CHIP-mediated degradation of transglutaminase 2 negatively regulates tumor growth and angiogenesis in renal cancer. Oncogene. doi:10.1038/onc.2015.439

    PubMed Central  Google Scholar 

  • Miyoshi N et al (2010) TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann Surg Oncol 17:967–972

    Article  PubMed  Google Scholar 

  • Murtaugh MP, Arend WP, Davies PJA (1984) Induction of tissue transglutaminase in human peripheral blood monocytes. J Exp Med 159:114–125

    Article  CAS  PubMed  Google Scholar 

  • Nadalutti C, Viiri KM, Kaukinen K, Mäki M, Lindfors K (2011) Extracellular transglutaminase 2 has a role in cell adhesion, whereas intracellular transglutaminase 2 is involved in regulation of endothelial cell proliferation and apoptosis. Cell Prolif 44:49–58

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Thomazy VA, Saydak MM, Stein JP, Davies PJ (1997) The promoter of the mouse tissue transglutaminase gene directs tissue-specific, retinoid-regulated and apoptosis-linked expression. Cell Death Differ 4:534–547

    Article  CAS  PubMed  Google Scholar 

  • Nakaoka H et al (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596

    Article  CAS  PubMed  Google Scholar 

  • Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  • Nunes I, Gleizes PE, Metz CN, Rifkin DB (1997) Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136:1151–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh K et al (2011) Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res 13:R96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliverio S, Amendola A, Rodolfo C, Spinedi A, Piacentini M (1999) Inhibition of “tissue” transglutaminase increases cell survival by preventing apoptosis. J Biol Chem 274:34123–34128

    Article  CAS  PubMed  Google Scholar 

  • Piacentini M, Melino G, Oliverio S, Piredda L, Biedler JL, Biedler E (1994) Role of tissue transglutaminase in neuroblastoma cells undergoing apoptosis. Prog Clin Biol Res 385:123–129

    CAS  PubMed  Google Scholar 

  • Piacentini M et al (2005) Type 2 transglutaminase and cell death. Prog Exp Tumor Res 38:58–74

    Article  CAS  PubMed  Google Scholar 

  • Piacentini M, D’Eletto M, Falasca L, Farrace MG, Rodolfo C (2011) Transglutaminase 2 at the crossroads between cell death and survival. Adv Enzymol Relat Areas Mol Biol 78:197–246

    CAS  PubMed  Google Scholar 

  • Piacentini M et al (2014) Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states. Cell Tissue Res 358:793–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce A et al (2013) Transglutaminase 2 expression in acute myeloid leukemia: association with adhesion molecule expression and leukemic blast motility. Proteomics 13:2216–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch M, Wodtke R, Pietzsch J, Löser R (2013) Tissue transglutaminase: an emerging target for therapy and imaging. Bioorg Med Chem Lett 23:6528–6543

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–444

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Kirkpatrick DL (2007) Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 7:392–397

    Article  CAS  PubMed  Google Scholar 

  • Prasad V, Fojo T, Brada M (2016) Precision oncology: origins, optimism, and potential. Lancet Oncol 17:e81–e86

    Article  PubMed  Google Scholar 

  • Quan G, Choi JY, Lee DS, Lee SC (2005) TGF-beta1 upregulates transglutaminase 2 and fibronectin in dermal fibroblasts: a possible mechanism for the stabilization of tissue inflammation. Arch Dermatol Res 297:84–90

    Article  CAS  PubMed  Google Scholar 

  • Ritter SJ, Davies PJ (1998) Identification of a transforming growth factor-beta1/bone morphogenetic protein 4 (TGF-beta1/BMP4) response element within the mouse tissue transglutaminase gene promoter. J Biol Chem 273:12798–12806

    Article  CAS  PubMed  Google Scholar 

  • Rius J et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samadi AK et al (2015) A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 35:S151–S184

    Article  PubMed  CAS  Google Scholar 

  • Sarang Z et al (2005) Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fas-mediated cell death in mice. Hepatology 42:578–587

    Article  CAS  PubMed  Google Scholar 

  • Sarang Z et al (2011) Transglutaminase 2 null macrophages respond to lipopolysaccharide stimulation by elevated proinflammatory cytokine production due to an enhanced alphavbeta3 integrin-induced Src tyrosine kinase signaling. Immunol Lett 138:71–78

    Article  CAS  PubMed  Google Scholar 

  • Satpathy M et al (2007) Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res 67:7194–7202

    Article  CAS  PubMed  Google Scholar 

  • Shao M et al (2009) Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase. Cancer Res 69:9192–9201

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Zhang J, Ma Y, Cerione RA, Antonyak MA (2016) The different conformational states of tissue transglutaminase have opposing affects on cell viability. J Biol Chem 291:9119–9132

    Article  CAS  PubMed  Google Scholar 

  • Sullivan NJ et al (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28:2940–2947

    Article  CAS  PubMed  Google Scholar 

  • Suto N, Ikura K, Sasaki R (1993) Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma HepG2 cells. J Biol Chem 268:7469–7473

    CAS  PubMed  Google Scholar 

  • Suva ML, Riggi N, Bernstein BE (2013) Epigenetic reprogramming in cancer. Science 339:1567–1570

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Tatsukawa H, Furutani Y, Hitomi K, Kojima S (2016) Transglutaminase 2 has opposing role in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 7:e2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CT, Pouyssegur J (2007) Oxygen, hypoxia, and stress. Ann N Y Acad Sci 1113:87–94

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  • Torricelli P, Caraglia M, Abbruzzese A, Beninati S (2012) Gamma-tocopherol inhibits human prostate cancer cell proliferation by up-regulation of transglutaminase 2 and down-regulation of cyclins. Amino Acids 44:45–51

    Article  PubMed  CAS  Google Scholar 

  • Tóth B et al (2009) Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol 182:2084–2092

    Article  PubMed  CAS  Google Scholar 

  • Verma A et al (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66:10525–10533

    Article  CAS  PubMed  Google Scholar 

  • Verma A et al (2008) Tissue transglutaminase regulates FAK/Akt activation by modulating PTEN expression in pancreatic cancer cells. Clin Cancer Res 14:1997–2005

    Article  CAS  PubMed  Google Scholar 

  • Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (2013) A novel extracellular role for tissue transglutaminase in matrix-bound VEGF-mediated angiogenesis. Cell Death Dis 4:e808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Zhao S (2013) Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin (Shanghai) 45:18–26

    Article  CAS  Google Scholar 

  • Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakubov B et al (2014) Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction. PLoS One 9:e89285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada KM, Even-Ram S (2002) Integrin regulation of growth factor receptors. Nat Cell Biol 4:E75–E76

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Han S, Sun Y (2014) An IL6-STAT3 loop mediates resistance to PI3K inhibitors by inducing epithelial-mesenchymal transition and cancer stem cell expansion in human breast cancer cells. Biochem Biophys Res Commun 453:582–587

    Article  CAS  PubMed  Google Scholar 

  • Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan L et al (2007) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26:2563–2573

    Article  CAS  PubMed  Google Scholar 

  • Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM (2009) Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 284:16693–16703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemskov EA, Mikhailenko I, Hsia R-C, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 6:e19414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the students and trainees from the laboratory whose work is discussed in this review. We regret failure to include many published studies due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Navneet Agnihotri or Kapil Mehta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. One of the authors (KM) serves as a Scientific Adviser for Lifecare Innovations (India) and as Board member of MolQ Diagnostics (India) without any compensation.

Research involving humans and animals

This article does not contain studies that involve human participants or animals.

Additional information

Handling Editors: S. Beninati, M. Piacentini, C. M. Bergamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnihotri, N., Mehta, K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids 49, 425–439 (2017). https://doi.org/10.1007/s00726-016-2320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2320-2

Keywords

Navigation