Skip to main content
Log in

Site-specific glycosylation of donkey milk lactoferrin investigated by high-resolution mass spectrometry

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A comprehensive monosaccharide composition of the N-glycans of donkey milk lactoferrin, isolated by ion exchange chromatography from an individual milk sample, was obtained by means of chymotryptic digestion, TiO2 and HILIC enrichment, reversed-phase high-performance liquid chromatography, electrospray mass spectrometry, and high collision dissociation fragmentation. The results obtained allowed identifying 26 different glycan structures, including high mannose, complex and hybrid N-glycans, linked to the protein backbone via an amide bond to asparagine residues located at the positions 137, 281 and 476. Altogether, the N-glycan structures determined revealed that most of the N-glycans identified in donkey milk lactoferrin are neutral complex/hybrid. Indeed, 10 neutral non-fucosylated complex/hybrid N-glycans and 4 neutral fucosylated complex/hybrid N-glycans were found. In addition, two high mannose N-glycans, four sialylated fucosylated complex N-glycans and six sialylated non-fucosylated complex N-glycans, one of which containing N-glycolylneuraminic acid (Neu5Gc), were found. A comparison of the monosaccharide composition of the N-glycans of donkey milk lactoferrin with respect to that of human, bovine and goat milk lactoferrin is reported. Data are available via ProteomeXchange with identifier PXD004289.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Almond RJ, Flanagan BF, Antonopoulos A, Haslam SM, Dell A, Kimber I, Dearman RJ (2013) Differential immunogenicity and allergenicity of native and recombinant human lactoferrins: role of glycosylation. Eur J Immunol 43(1):170–181

    Article  CAS  PubMed  Google Scholar 

  • Barboza M, Pinzon J, Wickramasinghe S, Froehlich JW, Moeller I, Smilowitz JT, Ruhaak LR, Huang J, Löennerdal B, German JB, Medrano JF, Weimer BC, Lebrilla CB (2012) Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria–host interactions. Mol Cell Proteomics 11(6):M111.015248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barello C, Perono Garoffo L, Montorfano G, Zava S, Berra B, Conti A, Giuffrida MG (2008) Analysis of major proteins and fat fractions associated with mare’s milk fat globules. Mol Nutr Food Res 52(12):1448–1456

    Article  CAS  PubMed  Google Scholar 

  • Bause E, Hettkamp H (1979) Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett 108(2):341–344

    Article  CAS  PubMed  Google Scholar 

  • Bertino E, Gastaldi D, Monti G, Baro C, Fortunato D, Perono Garoffo L, Coscia A, Fabris C, Mussap M, Conti C (2010) Detailed proteomic analysis on DM: insight into its hypoallergenicity. Front Biosci 2:526–536

    Article  Google Scholar 

  • Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22(9):1147–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chianese L, Calabrese MG, Ferranti P, Mauriello R, Garro G, De Simone C, Quarto M, Addeo F, Cosenza G, Ramunno L (2010) Proteomic characterization of donkey milk caseome. J Chromatogr A 1217(29):4834–4840

    Article  CAS  PubMed  Google Scholar 

  • Coppa GV, Zampini L, Galeazzi T, Gabrielli O (2006) Prebiotics in human milk: a review. Digest Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver 38(Suppl 2):S291–S294

    Article  Google Scholar 

  • Cunsolo V, Costa A, Saletti R, Muccilli V, Foti S (2007a) Detection and sequence determination of a new variant beta-lactoglobulin II from donkey. Rapid Commun Mass Spectrom 21(8):1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Cunsolo V, Saletti R, Muccilli V, Foti S (2007b) Characterization of the protein profile of donkey’s milk whey fraction. J Mass Spectrom 42(9):1162–1174

    Article  CAS  PubMed  Google Scholar 

  • Cunsolo V, Cairone E, Fontanini D, Criscione A, Muccilli V, Saletti R, Foti S (2009a) Sequence determination of αs1-casein isoforms from donkey by mass spectrometric methods. J Mass Spectrom 44(12):1742–1753

    CAS  PubMed  Google Scholar 

  • Cunsolo V, Cairone E, Saletti R, Muccilli V, Foti S (2009b) Sequence and phosphorylation level determination of two donkey beta-caseins by mass spectrometry. Rapid Commun Mass Spectrom 23(13):1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Cunsolo V, Muccilli V, Fasoli E, Saletti R, Righetti PG, Foti S (2011a) Poppea’s bath liquor: the secret proteome of she-donkey’s milk. J Proteomics 74(10):2083–2099

    Article  CAS  PubMed  Google Scholar 

  • Cunsolo V, Muccilli V, Saletti R, Foti S (2011b) Applications of mass spectrometry techniques in the investigation of milk proteome. Eur J Mass Spectrom 17(4):305–320

    Article  CAS  Google Scholar 

  • Cunsolo V, Muccilli V, Saletti R, Foti (2014) Mass spectrometry in food proteomics: a tutorial. J Mass Spectrom 49:768–784

    Article  CAS  PubMed  Google Scholar 

  • de Wit JN (1998) Nutritional and functional characteristics of whey proteins in food products. J Dairy Sci 81(3):597–608

    Article  PubMed  Google Scholar 

  • El-Agamy EI, Nawar M, Shamsia SM, Awad S, Haenlein GFW (2009) Are camel milk proteins convenient to the nutrition of cow milk allergy children? Small Rumin Res 82:1–6

    Article  Google Scholar 

  • Gallina S, Cunsolo V, Saletti R, Muccilli V, Di Francesco A, Foti S, Lorentzen AM, Roepstorff P (2016) Sequence characterization and glycosylation sites identification of donkey milk lactoferrin by multiple enzyme digestions and mass spectrometry. Amino Acids. doi:10.1007/s00726-016-2209-0

    Google Scholar 

  • Garrido D, Nwosu C, Ruiz-Moyano S, Aldredge D, German JB, Lebrilla CB, Mills DA (2012) Endo-beta-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol Cell Proteomics 11(9):775–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta Proteins Proteomics 1764(12):1853–1869

    Article  CAS  Google Scholar 

  • Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3(3):556–566

    Article  CAS  PubMed  Google Scholar 

  • Hutchens TW, Lönnerdal B, Rumball S (1994) Lactoferrin structure and function—remaining questions, methodological considerations and future directions. In: Hutchens TW, Rumball SV, Lönnerdal B (eds) Lactoferrin: structure and function. Springer, New York, pp 287–291

    Chapter  Google Scholar 

  • Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6(10):1778–1787

    Article  CAS  PubMed  Google Scholar 

  • Le Parc A, Dallas DC, Duaut S, Leonil J, Martin P, Barile D (2014) Characterization of goat milk lactoferrin N-glycans and comparison with the N-glycomes of human and bovine milk. Electrophoresis 35(11):1560–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Haiying, Rasmussen Morten I, Larsen Martin R, Guo Yao, Jers Carsten, Palmisano Giuseppe, Mikkelsen Jørn D, Kirpekar Finn (2015) Automated N-glycan profiling of a mutant Trypanosoma rangeli sialidase expressed in Pichia pastoris, using tandem mass spectrometry and bioinformatics. Glycobiology 25(12):1350–1361

    Article  CAS  PubMed  Google Scholar 

  • MassAI Bioinformatics MassAI. http://www.MassAI.dk

  • Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8(11):874–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monti G, Bertino E, Muratore MC, Coscia A, Cresi F, Silvestro L, Fabris C, Fortunato D, Giuffrida MG, Conti A (2007) Efficacy of donkey’s milk in treating highly problematic cow’s milk allergic children: an in vivo and in vitro study. Pediatr Allergy Immunol 18:258–264

    Article  PubMed  Google Scholar 

  • Monti G, Viola S, Baro C, Cresi F, Tovo PA, Moro G, Ferrero MP, Conti A, Bertino E (2012) Tolerability of donkey’s milk in 92 highly-problematic cow’s milk allergic children. J Biol Regul Homeost Agents 26:75–82

    CAS  PubMed  Google Scholar 

  • Nwosu CC, Aldredge DL, Lee H, Lerno LA, Zivkovic AM, German JB, Lebrilla CB (2012) Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J Proteome Res 11(5):2912–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda H, Wakabayashi H, Yamauchi K, Abe F (2014) Lactoferrin and bifidobacteria. Biometals 27(5):915–922

    Article  CAS  PubMed  Google Scholar 

  • Restani P, Beretta B, Fiocchi A, Ballabio C, Galli C (2002) Cross-reactivity between mammalian proteins. Ann Allergy Asthma Immunol 89(6 Suppl 1):11–15

    Article  CAS  PubMed  Google Scholar 

  • Restani P, Ballabio C, Di Lorenzo C (2009) Molecular aspects of milk allergens and their role in clinical events. Anal Bioanal Chem 395(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Saletti R, Muccilli V, Cunsolo V, Fontanini D, Capocchi A, Foti S (2012) MS-based characterization of αs2-casein isoforms in donkey’s milk. J Mass Spectrom 47(9):1150–1159

    Article  CAS  PubMed  Google Scholar 

  • Scafizzari M, Giannico F, Potere O, Trani A, Colonna MA, Zezza L, Vonghia G, Caputi Jambreghi A (2009) Epidermal growth factor (EGF) in mare and ass milk: a preliminary investigation. Ital J Anim Sci 8(Suppl 2):737

    Google Scholar 

  • Shental-Bechor D, Levy Y (2009) Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struc Biol 19(5):524–533

    Article  CAS  Google Scholar 

  • Stanley P, Schachter H, Taniguchi N (2009) N-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, New York (chapter 8)

    Google Scholar 

  • Swar MO (2011) Donkey milk-based formula: a substitute for patients with cow’s milk protein allergy. Sudan J Paediatr 11:21–24

    Google Scholar 

  • vanBerkel PHC, vanVeen HA, Geerts MEJ, deBoer HA, Nuijens JH (1996) Heterogeneity in utilization of N-glycosylation sites Asn(624) and Asn(138) in human lactoferrin: a study with glycosylation-site mutants. Biochem J 319:117–122

    Article  CAS  Google Scholar 

  • Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S (2009) Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies. Anal Biochem 395(2):178–188

    Article  CAS  PubMed  Google Scholar 

  • Yekta MA, Verdonck F, Van Den Broeck W, Goddeeris BM, Cox E, Vanrompay D (2010) Lactoferrin inhibits E. coli O157:H7 growth and attachment to intestinal epithelial cells. Vet Med Czech 55(8):359–368

    Google Scholar 

  • Yu T, Guo C, Wang J, Hao P, Sui S, Chen X, Zhang R, Wang P, Yu G, Zhang L, Dai Y, Li N (2011) Comprehensive characterization of the site-specific N-glycosylation of wild-type and recombinant human lactoferrin expressed in the milk of transgenic cloned cattle. Glycobiology 21(2):206–224

    Article  CAS  PubMed  Google Scholar 

  • Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. PNAS 108(Suppl 1):4653–4658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from PO FERS 2007/13 4.1.2.A, project “Piattaforma regionale di ricerca translazionale per la salute”, CUP B65E12000570008 and from POR 2007/2013 project “BRIT” CUP E61D11000280007. The mass spectrometry proteomics data have been deposited at the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD004289. We are grateful to Dr. D. Franchina and Dr. K. Torrisi (ASILAT srl farm, Milo, Catania) for the gift of the raw donkey milk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Foti.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with regard to publication of this research work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Handling Editor: P. R. Jungblut.

Electronic supplementary material

Supporting information may be found in the online version of this article.

Supplementary material 1 (DOCX 37 kb)

Supplementary material 2 (DOCX 7753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallina, S., Saletti, R., Cunsolo, V. et al. Site-specific glycosylation of donkey milk lactoferrin investigated by high-resolution mass spectrometry. Amino Acids 48, 2799–2808 (2016). https://doi.org/10.1007/s00726-016-2315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2315-z

Keywords

Navigation