Skip to main content
Log in

Identification and characterization of novel anticoagulant peptide with thrombolytic effect and nutrient oligopeptides with high branched chain amino acid from Whitmania pigra protein

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Natural and nutrient substances for cardiovascular disease are promising and capture researchers’ minds. Two kinds of novel bioactive peptides (high Fischer’s ratio oligopeptides and anticoagulant peptides) were obtained from Whitmania pigra protein via enzymatic hydrolysis. An oligopeptide (MW<874.0 Da) named as HF2 was obtained via chromatography purification procedures with a high Fischer’s ratio of 31.92 ± 1.36 and low phenylalanine + tyrosine content of 0.98 ± 0.04 %. Another peptide (WA3-1), prepared by alcalase AF 2.4 L-catalyzed hydrolysis and then purified by DEAE Sepharose FF, gel Sephadex G-15 chromatography, exhibited high anticoagulant activity with prolonging significantly plasma clotting time on activated partial thromboplastin time, prothrombin time, thrombin time (p < 0.01) and powerful thrombolytic activity. Amino acid composition and MALDI-TOF/TOF MS analysis showed that WA3-1 contained 11 amino acids (MW: 1422.0 Da) with the sequence as NH2–His-Asp-Phe-Leu-Asn-Asn-Lys-Leu-Glu-Tyr-Glu–COOH. Abundant negatively charged amino acids in C-terminal, as well as the special residue Lys contribute to its anticoagulant capacity. This research provided a novel natural candidate for the manufacture of nutrient oligopeptides with high branched chain amino acid, and anticoagulant thrombolytic agent in pharmaceutical industry with helping prevent from thrombosis and related cardiovascular diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adesso S, Ventre G, Sommella E, Pepe G, Pagano F, Sansone F (2015) Potential antioxidant peptides released after simulated gastro-intestinal digestion of Stracchino soft cheese. Amino Acids 47(8):1674

    Google Scholar 

  • Agnelli G, Pascucci C, Cosmi B, Nenci GG (1990) The comparative effects of recombinant hirudin (CGP39393) and standard heparin on thrombus growth in rabbits. Thromb Haemost 63(2):204–207

    CAS  PubMed  Google Scholar 

  • Allford SL, Machin SJ (2004) Haemostasis. Surgery (Oxford) 22:200a–200b

    Article  Google Scholar 

  • Anastasopoulos C, Sarigiannis Y, Stavropoulos G (2014) Cyclic peptide analogs of 558–565 epitope of A2 subunit of Factor VIII prolong aPTT. Toward a novel synthesis of anticoagulants. Amino Acids 46(4):1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Beljkas B, Matic J, Milovanovic I, Jovanov P, Misan A, Saric L (2010) Rapid method for determination of protein content in cereals and oilseeds: validation, measurement uncertainty and comparison with the Kjeldahl method. Accredit Qual Assur 15(10):555–561

    Article  CAS  Google Scholar 

  • Carrasco-Castilla J, Hernndez-lvar AJ, Jimnez-Martn C, Jacinto-Hernnde C, Alaiz M, Girn-Call J (2012) Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem 135(3):1789–1795

    Article  CAS  PubMed  Google Scholar 

  • Clemente A (2000) Enzymatic protein hydrolysates in human nutrition. Trend Food Sci Tech 11(7):254–262

    Article  CAS  Google Scholar 

  • Di Pasquale MG (2008) Amino acids and proteins for the athlete: the anabolic edge, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, p 434

    Google Scholar 

  • Dodt J, Seemuller U, Maschler R, Fritz H (1985) The complete covalent structure of hirudin. Localization of the disulfide bonds. Biol Chem Hoppe Seyler 366(4):379–385

    Article  CAS  PubMed  Google Scholar 

  • Fossum S, Hoem NO (1996) Urokinase and non-urokinase fibrinolytic activity in protease-inhibitor-deprived plasma, assayed by a fibrin micro-plate method. Immunopharmacology 32:119–121

    Article  CAS  PubMed  Google Scholar 

  • Hemeth AM, Steindl P, Ferenci P, Roth E, Hortnagl H (1998) Role of tryptophan in the elevated serotonin-turnover in hepatic encephalopathy. J Neural Trans 105(8–9):975–986

    Google Scholar 

  • Hou H, Fan Y, Li BF, Xue CH, Yu GL, Zhang ZH (2012) Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chem 134(2):821–828

    Article  CAS  PubMed  Google Scholar 

  • Jens AN (1986) Enzymatic hydrolysis of food protein. Elsevier Applied Science Publishers, New York

    Google Scholar 

  • Jung WK, Kim SK (2009) Isolation and characterization of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chem 117(4):687–692

    Article  CAS  Google Scholar 

  • Karabatas LM, de Bruno LF, Pastorale C, Lombardo YB, Basabe JC (2000) Branched-chain amino acid-enriched diet: effects on insulin secretion and cellular immune aggression. Proc Soc Exp Biol Med 224(3):159–165

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Delhaye S (1992) Simplified procedure for the determination of tryptophan of foods and feedstuffs from barytic hydrolysis. J Agric Food Chem 40(5):776–779

    Article  CAS  Google Scholar 

  • Liu JB, Yu ZP, Zhao WZ, Lin SY, Wang EL, Zhang Y (2010) Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates. Food Chem 122(4):1159–1163

    Article  CAS  Google Scholar 

  • Mao SJT, Yates MT, Blankenship DT, Cardin AD, Krstenansky JL, Lovenberg W (1987) Rapid purification and revised amino-terminal sequence of hirudin: a specific thrombin inhibitor of the bloodsucking leech. Anal Biochem 161(2):514–518

    Article  CAS  PubMed  Google Scholar 

  • Mao SJ, Yates MT, Owen TJ, Krstenansky JL (1988) Interaction hirudin with thrombin: identification of a minimal binding domain of hirudin that inhibits clotting activity. Biochem US 27(21):8170–8173

    Article  CAS  Google Scholar 

  • Mengwasser KE, Bush LA, Shih P, Cantwell AM, Di Cera E (2005) Hirudin binding reveals key determinants of thrombin allostery. J Biol Chem 280(29):26997–27003

    Article  CAS  PubMed  Google Scholar 

  • Mero A (1999) Leucine supplementation and intensive training. Sports Med 27(6):347–358

    Article  CAS  PubMed  Google Scholar 

  • Nasri R, Nasri M (2013) Marine-derived bioactive peptides as new anticoagulant agents: a review. Curr Protein Pept Sci 14(3):199–204

    Article  CAS  PubMed  Google Scholar 

  • Nasria R, Amorb IB, Bougatefa A, Nedjar-Arroume N, Dhulster P, Gargouri J (2012) Anticoagulant activities of goby muscle protein hydrolysates. Food Chem 133(3):835–841

    Article  Google Scholar 

  • Okita M, Watanabe A, Nagashima H (1985) Nutritional treatment of liver cirrhosis by branched amino acids-enriched nutrient mixture. J Nutr Sci Vitaminol 31(3):291–303

    Article  CAS  PubMed  Google Scholar 

  • Pedroche J, Yust MDM, Lqari H, Megias C, Ciron-Calle J, Alaiz M (2006) Production of Brassica carinata protein hydrolyzates with a high Fischer’s ratio using immobilized proteases. J Agric Food Chem 54(20):7621–7627

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Wu H, Li XF, Lai FR, Zhao GL, Xiao XL (2014) A two-step, one-pot enzymatic method for preparation of duck egg white protein hydrolysates with high antioxidant activity. Appl Biochem Biotech 172(3):1227–1240

    Article  CAS  Google Scholar 

  • Rojas RR, Cruz GA, Flores NA, Rodriguez SG, Gomez RL (2012) Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. Int Dairy J 26(2):147–154

    Article  Google Scholar 

  • Shimizu M, Sawashita N, Morimatsu F, Ichikawa J, Taguchi Y, Ijiri Y (2009) Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thromb Res 123(5):753–757

    Article  CAS  PubMed  Google Scholar 

  • Tipton KD, Wolfe RR (2004) Protein and amino acids for athletes. J Sport Sci 22(1):65–79

    Article  Google Scholar 

  • Udenigwe CC, Aluko RE (2010) Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high Fischer ratio peptide mixture. J Agric Food Chem 58(8):4762–4768

    Article  CAS  PubMed  Google Scholar 

  • Vercruysse L, Camp JV, Smagghe G (2005) ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review. J Agric Food Chem 53(21):8106–8115

    Article  CAS  PubMed  Google Scholar 

  • Yang WG, Wang Z, Xu SY (2007) A new method for determination of antithrombotic activity of egg white protein hydrolysate by microplate reader. Chin Chem Lett 18(4):449–451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Program for New Century Excellent Talents in University (NCET-12-0192), and Scientific Research Foundation for Young Teachers of Sichuan University (2016SCU11035) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wu or Xiaofeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: M. S. Palma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Yang, Y., Wu, W. et al. Identification and characterization of novel anticoagulant peptide with thrombolytic effect and nutrient oligopeptides with high branched chain amino acid from Whitmania pigra protein. Amino Acids 48, 2657–2670 (2016). https://doi.org/10.1007/s00726-016-2299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2299-8

Keywords

Navigation