Skip to main content

Advertisement

Log in

Polyamine–DNA interactions and development of gene delivery vehicles

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines are positively charged organic cations under physiologic ionic and pH conditions and hence they interact with negatively charged macromolecules such as DNA and RNA. Although electrostatic interaction is the predominant mode of polyamine–nucleic acid interactions, site- and structure-specific binding has also been recognized. A major consequence of polyamine–DNA interaction is the collapse of DNA to nanoparticles of approximately 100 nm diameter. Electron and atomic force microscopic studies have shown that these nanoparticles are spheroids, toroids and rods. DNA transport to cells for gene therapy applications requires the condensation of DNA to nanoparticles and hence the study of polyamines and related compounds with nucleic acids has received technological importance. In addition to natural and synthetic polyamines, several amine-terminated or polyamine-substituted agents are under intense investigation for non-viral gene delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PBAE:

Poly(β-aminoester)

PDMA:

Poly(2-(dimethylamino)ethyl methacrylate

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

PEO:

Poly(ethyleneoxide)

References

  • Agostinelli E, Vianello F, Magliulo G, Thomas T, Thomas TJ (2015) Nanoparticle strategies for cancer therapeutics: nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (review). Int J Oncol 46:5–16

    CAS  PubMed  Google Scholar 

  • Albuquerque LJ, Annes K, Milazzotto MP, Mattei B, Riske KA, Jäger E, Pánek J, Štěpánek P, Kapusta P, Muraro PI, De Freitas AG, Schmidt V, Giacomelli C, Bonvent JJ, Giacomelli FC, Albuquerque LJC, Annes K, Milazzotto MP et al (2016) Efficient condensation of DNA into environmentally responsive polyplexes produced from block catiomers carrying amine or diamine groups. Langmuir 32:577–586

    Article  CAS  PubMed  Google Scholar 

  • Amir RJ, Pessah N, Shamis M, Shabat D (2003) Self-immolative dendrimers. Angew Chem Int Ed Eng 42:4494–4499

    Article  CAS  Google Scholar 

  • Antony T, Thomas T, Shirahata A, Thomas TJ (1999a) Selectivity of polyamines on the stability of RNA-DNA hybrids containing phosphodiester and phosphorothioate oligodeoxyribonucleotides. Biochemistry 38:10775–10784

    Article  CAS  PubMed  Google Scholar 

  • Antony T, Thomas T, Shirahata A, Sigal LH, Thomas TJ (1999b) Selectivity of spermine homologs on triplex DNA stabilization. Antisense Nucleic Acid Drug Dev 9:221–231

    Article  CAS  PubMed  Google Scholar 

  • Antony T, Thomas T, Sigal LH, Shirahata A, Thomas TJ (2001) A molecular beacon strategy for the thermodynamic characterization of triplex DNA: triplex formation at the promoter region of cyclin D1. Biochemistry 40:9387–9395

    Article  CAS  PubMed  Google Scholar 

  • Bancroft D, Williams LD, Rich A, Egli M (1994) The low-temperature crystal structure of the pure-spermine form of Z-DNA reveals binding of a spermine molecule in the minor groove. Biochemistry 33:1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Barnard A, Posocco P, Pricl S, Calderon M, Haag R, Hwang ME, Shum VWT, Pack DW, Smith DK (2011) Degradable self-assembling dendrons for gene delivery: experimental and theoretical insights into the barriers to cellular uptake. J Am Chem Soc 133:20288–20300

    Article  CAS  PubMed  Google Scholar 

  • Bazzicalupi C, Chioccioli M, Sissi C, Porcù E, Bonaccini C, Pivetta C, Bencini A, Giorgi C, Valtancoli B, Melani F, Gratteri P (2010) Modeling and biological investigations of an unusual behavior of novel synthesized acridine-based polyamine ligands in the binding of double helix and G-quadruplex DNA. ChemMedChem 5:1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Vijayanathan V, Thomas T, Thomas TJ (2013) Ionic microenvironmental effects on triplex DNA stabilization: cationic counterion effects on poly(dT).poly(dA).poly(dT). Biochimie 95:1310–1318

    Article  CAS  PubMed  Google Scholar 

  • Behe M, Felsenfeld G (1981) Effects of methylation on a synthetic polynucleotide: the B-Z transition in poly(dG-m5dC)poly(dG-m5dC). Proc Natl Acad Sci USA 78:1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blessing T, Remy JS, Behr JP (1998) Template oligomerization of DNA-bound cations produces calibrated nanometric particles. J Am Chem Soc 120:8519–8520

    Article  CAS  Google Scholar 

  • Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341

    Article  CAS  PubMed  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunlin WH, Strick TJ, Record MT Jr (1982) Equilibrium dialysis studies of polyamine binding to DNA. Biopolymers 21:1301–1314

    Article  CAS  PubMed  Google Scholar 

  • Burak Y, Ariel G, Andelman D (2003) Onset of DNA aggregation in presence of monovalent and multivalent counterions. Biophys J 85:2100–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Dong C, Dong H, Wang G, Pauletti GM, Pan X, Wen H, Mehl I, Li Y, Shi D (2012) Effective gene delivery using stimulus-responsive catiomer designed with redox-sensitive disulfide and acid-labile imine linkers. Biomacromolecules 13:1024–1034

    Article  CAS  PubMed  Google Scholar 

  • Cooney M, Czernuszewicz G, Postel EH, Flint SJ, Hogan ME (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241:456–459

    Article  CAS  PubMed  Google Scholar 

  • Costa D, Valente AJ, Queiroz J (2015) Stimuli-responsive polyamine-DNA blend nanogels for co-delivery in cancer therapy. Colloids Surf B Biointerfaces 132:194–201

    Article  CAS  PubMed  Google Scholar 

  • Cowman MK, Fasman GD (1978) Circular dichroism analysis of mononucleosome DNA conformation. Proc Natl Acad Sci USA 75:4759–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demeneix B, Behr JP (2005) Polyethyleneimine (PEI). Adv Genet 53:215–230

    Google Scholar 

  • Demeneix B, Hassani Z, Behr JP (2004) Towards multifunctional synthetic vectors. Curr Gene Ther 4:445–455

    Article  CAS  PubMed  Google Scholar 

  • Donkuru M, Badea I, Wettig S, Verrall R, Elsabahy M, Foldvari M (2010) Advancing nonviral gene delivery: lipid- and surfactant-based nanoparticle design strategies. Nanomedicine 5:1103–1127

    Article  CAS  PubMed  Google Scholar 

  • Durland RH, Kessler DJ, Gunnell S, Duvic M, Pettitt BM, Hogan ME (1991) Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry 30:9246–9255

    Article  CAS  PubMed  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenfeld G, Davies DR, Rich A (1957) Formation of a three stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  • Feuerstein BG, Pattabiraman N, Marton LJ (1986) Spermine-DNA interactions: a theoretical study. Proc Natl Acad Sci USA 83:5948–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer W, Quadir MA, Barnard A, Smith DK, Haag R (2011) Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells. Macromol Biosci 11:1736–1747

    Article  CAS  PubMed  Google Scholar 

  • Fox KR, Brown T (2011) Formation of stable DNA triplexes. Biochem Soc Trans 39:629–634

    Article  CAS  PubMed  Google Scholar 

  • Frassineti C, Ghelli S, Gans P, Sabatini A, Moruzzi MS, Vacca A (1995) Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. Anal Biochem 231:374–382

    Article  CAS  PubMed  Google Scholar 

  • Gosselin MA, Guo W, Lee RJ (2001) Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjugate Chem 12:989–994

    Article  CAS  Google Scholar 

  • Hardin CC, Perry AG, White K (2001) Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers 56:147–194

    Article  CAS  Google Scholar 

  • He C, Zhuang X, Tang Z, Tian H, Chen X (2012) Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv Healthc Mater 1:48–78

    Article  CAS  PubMed  Google Scholar 

  • Heerschap A, Walters JA, Hilbers CW (1985) Interactions of some naturally occurring cations with phenylalanine and initiator tRNA from yeast as reflected by their thermal stability. Biophys Chem 22:205–217

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Aoki Y, Hirose S (1977) Base specificity of polyamine binding to synthetic polynucleotides. J Biochem 81:1091–1096

    CAS  PubMed  Google Scholar 

  • Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90:1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Qu W, Pan D, Ren Y, Williford JM, Cui H, Luijten E, Mao HQ (2013) Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv Mater 25:227–232

    Article  CAS  PubMed  Google Scholar 

  • Jovin TM, McIntosh LP, Arndt-Jovin DJ, Zarling DA, Robert-Nicoud M, van de Sande JH, Jorgenson KF, Eckstein F (1983) Left-handed DNA: from synthetic polymers to chromosomes. J Biomol Struct Dyn 1:21–57

    Article  CAS  PubMed  Google Scholar 

  • Joyeux M (2015) Compaction of bacterial genomic DNA: clarifying the concepts. J Phys Condens Matter 27:383001

    Article  PubMed  CAS  Google Scholar 

  • Kabir A, Suresh Kumar G (2013) Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 8:e70510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir A, Suresh Kumar G (2014) Targeting double-stranded RNA with spermine, 1-naphthylacetyl spermine and spermidine: a comparative biophysical investigation. J Phys Chem B 118:11050–11064

    Article  CAS  PubMed  Google Scholar 

  • Keniry MA, Owen EA (2007) An investigation of the dynamics of spermine bound to duplex and quadruplex DNA by (13)C NMR spectroscopy. Eur Biophys J 36:637–646

    Article  CAS  PubMed  Google Scholar 

  • Kornyshev AA, Leikin S (2013) Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation. Biophys J 104:2031–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korolev N, Lyubartsev AP, Nordenskiöld L (2010) Cation-induced polyelectrolyte-polyelectrolyte attraction in solutions of DNA and nucleosome core particles. Adv Colloid Interface Sci 158:32–47

    Article  CAS  PubMed  Google Scholar 

  • Kostiainen MA, Rosilo H (2009) Low-molecular-weight dendrons for DNA binding and release by reduction-triggered degradation of multivalent interactions. Chemistry 15:5656–5660

    Article  CAS  PubMed  Google Scholar 

  • Kostiainen MA, Smith DK, Ikkala O (2007) Optically triggered release of DNA from multivalent dendrons by degrading and charge-switching multivalency. Angew Chem Int Ed Engl 46:7600–7604

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Kim SW (2014) Bioreducible polymers for therapeutic gene delivery. J Control Release 190:424–439

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Mo H, Koo H, Park JY, Cho MY, Jin GW, Park JS (2007) Visualization of the degradation of a disulfide polymer, linear poly(ethylenimine sulfide), for gene delivery. Bioconjugate Chem 18:13–18

    Article  CAS  Google Scholar 

  • Lewis JS, Thomas TJ, Shirahata A, Thomas T (2000) Self-assembly of an oligodeoxyribonucleotide harboring the estrogen response element in the presence of polyamines: ionic, structural, and DNA sequence specificity effects. Biomacromolecules 1:339–349

    Article  CAS  PubMed  Google Scholar 

  • Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266

    Article  CAS  PubMed  Google Scholar 

  • Mamasakhlisov YSh, Todd BA, Badasyan AV, Mkrtchyan AV, Morozov VF, Parsegian VA (2009) DNA stretching and multivalent-cation-induced condensation. Phys Rev E Stat Nonlin Soft Matter Phys 80:031915-1-9

    Article  CAS  Google Scholar 

  • Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    Article  CAS  PubMed  Google Scholar 

  • Marquet R, Houssier C (1991) Thermodynamics of cation-induced DNA condensation. J Biomol Struct Dyn 9:159–167

    Article  CAS  PubMed  Google Scholar 

  • Mastorakos P, da Silva AL, Chisholm J (2015) Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci USA 112:8720–8725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matulis D, Rouzina I, Bloomfield VA (2000) Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. J Mol Biol 296:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • McCutchan JH, Pagano JS (1968) Enchancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Nat Cancer Inst 41:351–357

    CAS  PubMed  Google Scholar 

  • Midoux P, Pichon C, Yaouanc JJ, Jaffrès PA (2009) Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 157:166–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41:2562–2574

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Rodriguez R (2014) G-quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Rev Clin Pharmacol 7:663–679

    Article  PubMed  CAS  Google Scholar 

  • N’soukpoé-Kossi CN, Ouameur AA, Thomas T, Shirahata A, Thomas TJ, Tajmir-Riahi HA (2008) DNA interaction with antitumor polyamine analogues: a comparison with biogenic polyamines. Biomacromolecules 9:2712–2718

    Article  PubMed  CAS  Google Scholar 

  • N’soukpoé-Kossi CN, Ahmed Ouameur A, Thomas T, Thomas TJ, Tajmir-Riahi HA (2009) Interaction of tRNA with antitumor polyamine analogues. Biochem Cell Biol 87:621–630

    Article  PubMed  CAS  Google Scholar 

  • Nayvelt I, Thomas T, Thomas TJ (2007) Mechanistic differences in DNA nanoparticle formation in the presence of oligolysines and poly-l-lysine. Biomacromolecules 8:477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayvelt I, Hyvönen MT, Alhonen L, Pandya I, Thomas T, Khomutov AR, Vepsäläinen J, Patel R, Keinänen TA, Thomas TJ (2010) DNA condensation by chiral alpha-methylated polyamine analogues and protection of cellular DNA from oxidative damage. Biomacromolecules 11:97–105

    Article  CAS  PubMed  Google Scholar 

  • Neidle S, Parkinson GN (2008) Quadruplex DNA crystal structures and drug design. Biochimie 90:1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Ouameur AA, Tajmir-Riahi HA (2004) Structural analysis of DNA interactions with biogenic polyamines and cobalt(III)hexamine studied by Fourier transform infrared and capillary electrophoresis. J Biol Chem 279:42041–42054

    Article  CAS  PubMed  Google Scholar 

  • Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  • Pasternack RF (2003) Circular dichroism and the interactions of water soluble porphyrins with DNA. Chirality 15:329–332

    Article  CAS  PubMed  Google Scholar 

  • Pelta J Jr, Durand D, Doucet J, Livolant F (1996a) DNA mesophases induced by spermidine: structural properties and biological implications. Biophys J 71:48–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelta J, Livolant F, Sikorav JL (1996b) DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem 271:5656–5662

    Article  CAS  PubMed  Google Scholar 

  • Pensado A, Seijo B, Sanchez A (2014) Current strategies for DNA therapy based on lipid nanocarriers. Expert Opin Drug Deliv 11:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Pichon C, LeCam E, Guérin B, Coulaud D, Delain E, Midoux P (2002) Poly[Lys-(AEDTP)]: a cationic polymer that allows dissociation of pDNA/cationic polymer complexes in a reductive medium and enhances polyfection. Bioconjugate Chem 13:76–82

    Article  CAS  Google Scholar 

  • Plum GE, Bloomfield VA (1990) Structural and electrostatic effects on binding of trivalent cations to double-stranded and single-stranded poly[d (AT)]. Biopolymers 29:13–27

    Article  CAS  PubMed  Google Scholar 

  • Rajeev KG, Jadhav VR, Ganesh KN (1997) Triplex formation at physiological pH: comparative studies on DNA triplexes containing 5-Me-dC tethered at N4 with spermine and tetraethyleneoxyamine. Nucleic Acids Res 25:4187–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raspaud E, Chaperon I, Leforestier A, Livolant F (1999) Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J 77:1547–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raspaud E, Durand D, Livolant F (2005) Interhelical spacing in liquid crystalline spermine and spermidine-DNA precipitates. Biophys J 88:392–403

    Article  CAS  PubMed  Google Scholar 

  • Rau DC, Parsegian VA (1992) Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys J 61:246–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remy S, Sirlin C, Vierling P, Behr JP (1994) Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjugate Chem 5:647–654

    Article  CAS  Google Scholar 

  • Rubin RL (1977) Spermidine-deoxyribonucleic acid interaction in vitro and in Escherichia coli. J Bacteriol 129:916–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safinya Cyrus R (2001) Structures of lipid–DNA complexes: supramolecular assembly and gene delivery. Curr Opin Struct Biol 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Saminathan M, Antony T, Shirahata A, Sigal LH, Thomas T, Thomas TJ (1999) Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry 38:3821–3830

    Article  CAS  PubMed  Google Scholar 

  • Saminathan M, Thomas T, Shirahata A, Pillai CK, Thomas TJ (2002) Polyamine structural effects on the induction and stabilization of liquid crystalline DNA: potential applications to DNA packaging, gene therapy and polyamine therapeutics. Nucleic Acids Res 30:3722–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhakumaran LM, Thomas T, Thomas TJ (2004) Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res 32:2102–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellman JA, Parthasarathy N (1984) X-ray diffraction studies on cation-collapsed DNA. J Mol Biol 175:313–329

    Article  CAS  PubMed  Google Scholar 

  • Shafer RH (1998) Stability and structure of model DNA triplexes and quadruplexes and their interactions with small ligands. Prog Nucleic Acid Res Mol Biol 59:55–94

    Article  CAS  PubMed  Google Scholar 

  • Shim MS, Kwon YJ (2012) Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv Drug Deliv Rev 64:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Son S, Namgung R, Kim J, Singha K, Kim WJ (2012) Bioreducible polymers for gene silencing and delivery. Acc Chem Res 45:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Strekas TC, Engel R, Locknauth K, Cohen J, Fabian J (1999) Polycations. 5. Inducement of psi-DNA circular dichroism signals for duplex deoxyribonucleotide homopolymers by polycationic strings. Arch Biochem Biophys 364:129–131

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Xiang J, Liu Y, Li L, Li Q, Xu G, Tang Y (2011) A stabilizing and denaturing dual-effect for natural polyamines interacting with G-quadruplexes depending on concentration. Biochimie 93:1351–1356

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan N, Suresh CH, Thomas T, Thomas TJ, Pillai CK (2008) Liquid crystalline phase behavior of high molecular weight DNA: a comparative study of the influence of metal ions of different size, charge and binding mode. Biomacromolecules 9:1860–1869

    Article  CAS  PubMed  Google Scholar 

  • Tabor H (1962) The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry 1:496–501

    Article  CAS  PubMed  Google Scholar 

  • Thomas TJ, Bloomfield VA (1983) Collapse of DNA caused by trivalent cations: pH and ionic specificity effects. Biopolymers 22:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Thomas TJ, Bloomfield VA (1984) Ionic and structural effects on the thermal helix-coil transition of DNA complexed with natural and synthetic polyamines. Biopolymers 23:1295–1306

    Article  CAS  PubMed  Google Scholar 

  • Thomas TJ, Messner RP (1986) A left-handed (Z) conformation of poly(dA-dC).poly(dG-dT) induced by polyamines. Nucleic Acids Res 14:6721–6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas TJ, Messner RP (1988) Structural specificity of polyamines in left-handed Z-DNA formation. Immunological and spectroscopic studies. J Mol Biol 201:463–467

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (1993) Selectivity of polyamines in triplex DNA stabilization. Biochemistry 32:14068–14074

    Article  CAS  PubMed  Google Scholar 

  • Thomas TJ, Bloomfield VA, Canellakis ZN (1985) Differential effects on the B-to-Z transition of poly(dG-me5dC).poly(dG-me5dC) produced by N1- and N8-acetyl spermidine. Biopolymers 24:725–729

    Article  CAS  PubMed  Google Scholar 

  • Thomas TJ, Faaland CA, Gallo MA, Thomas T (1995) Suppression of c-myc oncogene expression by a polyamine-complexed triplex forming oligonucleotide in MCF-7 breast cancer cells. Nucleic Acids Res 23:3594–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas TJ, Kulkarni GD, Greenfield NJ, Shirahata A, Thomas T (1996) Structural specificity effects of trivalent polyamine analogues on the stabilization and conformational plasticity of triplex DNA. Biochem J 319:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RM, Thomas T, Wada M, Sigal LH, Shirahata A, Thomas TJ (1999) Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues: structure-activity relationships. Biochemistry 38:13328–13337

    Article  CAS  PubMed  Google Scholar 

  • Todd BA, Parsegian VA, Shirahata A, Thomas TJ, Rau DC (2008) Attractive forces between cation condensed DNA double helices. Biophys J 94:4775–4782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travers A, Muskhelishvili G (2015) DNA structure and function. FEBS J 282:2279–2295

    Article  CAS  PubMed  Google Scholar 

  • Veis A (2011) A review of the early development of the thermodynamics of the complex coacervation phase separation. Adv Colloid Interface Sci 167:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkiteswaran S, Vijayanathan V, Shirahata A, Thomas T, Thomas TJ (2005) Antisense recognition of the HER-2 mRNA: effects of phosphorothioate substitution and polyamines on DNA.RNA, RNA.RNA, and DNA.DNA duplex stability. Biochemistry 44:303–312

    Article  CAS  PubMed  Google Scholar 

  • Vijayanathan V, Thomas T, Shirahata A, Thomas TJ (2001) DNA condensation by polyamines: a laser light scattering study of structural effects. Biochemistry 40:13644–13651

    Article  CAS  PubMed  Google Scholar 

  • Vijayanathan V, Thomas T, Thomas TJ (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 48:14085–14094

    Article  CAS  Google Scholar 

  • Vijayanathan V, Thomas T, Antony T, Shirahata A, Thomas TJ (2004) Formation of DNA nanoparticles in the presence of novel polyamine analogues: a laser light scattering and atomic force microscopic study. Nucleic Acids Res 32:127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayanathan V, Lyall J, Thomas T, Shirahata A, Thomas TJ (2005) Ionic, structural, and temperature effects on DNA nanoparticles formed by natural and synthetic polyamines. Biomacromolecules 6:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Vijayanathan V, Agostinelli E, Thomas T, Thomas TJ (2014) Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy. Amino Acids 46:499–509

    Article  CAS  PubMed  Google Scholar 

  • Wagner E (2007) Programmed drug delivery: nanosystems for tumor targeting. Expert Opin Biol Ther 7:587–593

    Article  CAS  PubMed  Google Scholar 

  • Wagner E (2008) Converging path of viral and non-viral vector engineering. Mol Ther 16:1–2

    Article  CAS  PubMed  Google Scholar 

  • Wagner E (2014) Polymers for nucleic acid transfer-an overview. Adv Genet 88:231–261

    PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Wen LN, Xie MX (2013) Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy. Biochimie 95:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Pan S, Luo X, Zhang W, Shen Y, Feng M (2010) PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection. J Biomater Sci Polym Ed 21:1103–1126

    Article  CAS  PubMed  Google Scholar 

  • Wilson RW, Bloomfield VA (1979) Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry 18:2192–2196

    Article  CAS  PubMed  Google Scholar 

  • Wilson RW, Rau DC, Bloomfield VA (1980) Comparison of polyelectrolyte theories of the binding of cations to DNA. Biophys J 30:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JA, Rozema DB (2008) Breaking the bonds: non-viral vectors become chemically dynamic. Mol Ther 16:16–29

    Article  CAS  Google Scholar 

  • Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262:4429–4432

    CAS  PubMed  Google Scholar 

  • Zhang C, Jin R, Zhao P, Lin C (2014) A family of cationic polyamides for in vitro and in vivo gene transfection. Acta Biomater 22:120–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant (PC28-13) from the Foundation of UMDNJ (currently New Jersey Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This research did not involve the participation of human subjects. No animals were also used.

Additional information

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, T.J., Tajmir-Riahi, H.A. & Thomas, T. Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 48, 2423–2431 (2016). https://doi.org/10.1007/s00726-016-2246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2246-8

Keywords

Navigation