Skip to main content
Log in

Catabolism and safety of supplemental l-arginine in animals

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

l-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76–85 and 81–96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg–HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg–HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Amino acid(s)

Arg:

l-arginine

AUC:

Area-under-the curve

BW:

Body weight

CAT:

Cationic amino acid transporter

d:

Day(s)

hArg:

Homoarginine

MRSD:

Maximum recommended starting dose

NO:

Nitric oxide

NOS:

Nitric oxide synthase

References

  • Agostinelli E (2014) Polyamines and transglutaminases: biological, clinical, and biotechnological perspectives. Amino Acids 46:475–485

    Article  CAS  PubMed  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. Springerplus 3:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  PubMed  Google Scholar 

  • Beaumier L, Castillo L, Ajami AM, Young VR (1995) Urea cycle intermediate kinetics and nitrate excretion at normal and “therapeutic” intakes of arginine in humans. Am J Physiol Endocrinol Metab 269:E884–E896

    CAS  Google Scholar 

  • Benhar M (2015) Nitric oxide and the thioredoxin system: a complex interplay in redox regulation. Biochim Biophys Acta 1850:2476–2484

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Jäger K, Dobrowolny H, Steiner J, Keilhoff G, Bogerts B, Laube G (2015) Possible sources and functions of l-homoarginine in the brain: review of the literature and own findings. Amino Acids 47:1729–1740

    Article  CAS  PubMed  Google Scholar 

  • Böger RH (2014) The pharmacodynamics of l-arginine. Altern Ther Health Med 20:48–54

    PubMed  Google Scholar 

  • Breuillard C, Cynober L, Moinard C (2015) Citrulline and nitrogen homeostasis: an overview. Amino Acids 47:685–691

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    Article  CAS  PubMed  Google Scholar 

  • Brown B, Roehl K, Betz M (2015) Enteral nutrition formula selection: current evidence and implications for practice. Nutr Clin Pract 30:72–85

    Article  PubMed  Google Scholar 

  • Burrin DG, Ng K, Stoll B, Sáenz De Pipaón M (2014) Impact of new-generation lipid emulsions on cellular mechanisms of parenteral nutrition-associated liver disease. Adv Nutr 5:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrò RS, Gervasi G, Bramanti P (2014) l-Arginine and vascular diseases: lights and pitfalls! Acta Biomed 85:222–2228

    PubMed  Google Scholar 

  • Caldovic L, Tuchman M (2003) N-acetylglutamate and its changing role through evolution. Biochem J 372:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR (1993) Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol Endocrinol Metab 265:E532–E539

    CAS  Google Scholar 

  • Chin-Dusting JP, Alexander CT, Arnold PJ, Hodgson WC, Lux AS, Jennings GL (1996) Effects of in vivo and in vitro l-arginine supplementation on healthy human vessels. J Cardiovasc Pharmacol 28:158–166

    Article  CAS  PubMed  Google Scholar 

  • Clarkson P, Adams MR, Powe AJ, Donald AE, McCredie R, Robinson J, McCarthy SN, Keech A, Celermajer DS, Deanfield JE (1996) Oral l-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 97:1989–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Closs EI, Simon A, Vékony N, Rotmann A (2004) Plasma membrane transporters for arginine. J Nutr 134:2752S–2759S

    CAS  PubMed  Google Scholar 

  • Collins JK, Wu G, Perkins-Veazie P, Spears K, Claypool PL, Baker RA, Clevidence BA (2007) Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 23:261–266

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Li XL, Xi PB, Zhang J, Wu G, Zhu WY (2012) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y, Wang JJ, Satterfield MC, Meininger CJ, Bazer FW, Wu G (2013) Nitric oxide and energy metabolism in mammals. Biofactors 39:383–391

    Article  CAS  PubMed  Google Scholar 

  • Dashtabi A, Mazloom Z, Fararouei M, Hejazi N (2015) Oral l-arginine administration improves anthropometric and biochemical indices associated with cardiovascular diseases in obese patients: a randomized, single blind placebo controlled clinical trial. Res Cardiovasc Med 5(1):e29419

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis TA, Nguyen HV, Garcia-Bravo R, Fiorotto ML, Jackson EM, Lewis DS, Lee DR, Reeds PJ (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    CAS  PubMed  Google Scholar 

  • Edmonds MS, Gonyou HW, Baker DH (1987) Effect of excess levels of methionine, tryptophan, arginine, lysine or threonine on growth and dietary choice in the pig. J Anim Sci 65:179–185

    CAS  PubMed  Google Scholar 

  • Flynn NE, Meininger CJ, Kelly K, Ing NH, Morris SM Jr, Wu G (1999) Glucocorticoids mediate the enhanced expression of intestinal type II arginase and argininosuccinate synthase in postweaning pigs. J Nutr 129:799–803

    CAS  PubMed  Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), U.S. Department of Health and Human Services (2005) Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. U.S. Department of Health and Human Services, Bethesda. http://www.fda.gov/cdev/guidance/index.htm

  • Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    CAS  PubMed  Google Scholar 

  • Getty CM, Almeida FN, Baratta AA, Dilger RN (2015) Plasma metabolomics indicates metabolic perturbations in low birth weight piglets supplemented with arginine. J Anim Sci 93:5754–5763

    Article  CAS  PubMed  Google Scholar 

  • Grasemann H, Grasemann C, Kurtz F, Tietze-Schillings G, Vester U, Ratjen F (2005) Oral l-arginine supplementation in cystic fibrosis patients: a placebo-controlled study. Eur Respir J 25:62–68

    Article  CAS  PubMed  Google Scholar 

  • Grimble GK (2007) Adverse gastrointestinal effects of arginine and related amino acids. J Nutr 137(Suppl 2):1693S–1701S

    CAS  PubMed  Google Scholar 

  • Hatzoglou M, Fernandez J, Yaman I, Closs E (2004) Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu Rev Nutr 24:377–399

    Article  CAS  PubMed  Google Scholar 

  • Holecek M, Sispera L (2016) Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats. Nutrients 8(4). doi:10.3390/nu8040206

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016a) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  PubMed  Google Scholar 

  • Hou YQ, Hu SD, Jia SC, Nawaratna G, Che DS, Wang FL, Bazer FW, Wu G (2016b) Whole-body synthesis of l-homoarginine in pigs and rats supplemented with l-arginine. Amino Acids 48:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Hu SD, Li XL, Rezaei R, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with l-arginine in pigs. Amino Acids 47:925–936

    Article  CAS  PubMed  Google Scholar 

  • Hurt RT, Ebbert JO, Schroeder DR, Croghan IT, Bauer BA, McClave SA, Miles JM, McClain CJ (2014) l-Arginine for the treatment of centrally obese subjects: a pilot study. J Diet Suppl 11:40–52

    Article  CAS  PubMed  Google Scholar 

  • Jacquez JA (1996) Compartmental analysis in biology and medicine. BioMedware, Ann Arbor

    Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB, Spencer TE, Fried SK, Wu G (2009) Dietary l-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayacelebi AA, Langen J, Weigt-Usinger K, Chobanyan-Jürgens K, Mariotti F, Schneider JY, Rothmann S, Frölich JC, Atzler D, Choe CU, Schwedhelm E, Huneau JF, Lücke T, Tsikas D (2015) Biosynthesis of homoarginine (hArg) and asymmetric dimethylarginine (ADMA) from acutely and chronically administered free l-arginine in humans. Amino Acids 47:1893–1908

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Song G, Wu G, Gao H, Johnson GA, Bazer FW (2013) Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod 88:113

    Article  PubMed  Google Scholar 

  • King DE, Mainous AG, Geesey ME (2008) Variation in l-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 28:21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong X, Tan B, Yin Y, Gao H, Li X, Jaeger LA, Bazer FW, Wu G (2012) l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Lan A, Blachier F, Benamouzig R, Beaumont M, Barrat C, Coelho D, Lancha A Jr, Kong X, Yin Y, Marie JC, Tomé D (2015) Mucosal healing in inflammatory bowel diseases: is there a place for nutritional supplementation? Inflamm Bowel Dis 21:198–207

    Article  PubMed  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Li P, Li XL, Satterfield MC, Spencer TE, Wu G (2009) Intravenous administration of l-citrulline to pregnant ewes is more effective than l-arginine for increasing arginine availability in the fetus. J Nutr 139:660–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2010) Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J Nutr 140:1242–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2011) Parenteral administration of l-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J Nutr 141:849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Lucotti P, Setola E, Monti LD, Galluccio E, Costa S, Sandoli EP, Fermo I, Rabaiotti G, Gatti R, Piatti P (2006) Beneficial effect of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 291:E906–E912

    Article  CAS  PubMed  Google Scholar 

  • Luiking YC, Ten Have GA, Wolfe RR, Deutz NE (2012) Arginine de novo and nitric oxide production in disease states. Am J Physiol Endocrinol Metab 303:E1177–E1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoard S, Sales F, Wards N, Sciascia Q, Oliver M, Koolaard J, van der Linden D (2013) Parenteral administration of twin-bearing ewes with l-arginine enhances the birth weight and brown fat stores in sheep. Springerplus 2:684

    Article  PubMed  PubMed Central  Google Scholar 

  • Monné M, Miniero DV, Daddabbo L, Palmieri L, Porcelli V, Palmieri F (2015) Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids 47:1763–1777

    Article  PubMed  Google Scholar 

  • Moretti M, Matheus FC, de Oliveira PA, Neis VB, Ben J, Walz R, Rodrigues AL, Prediger RD (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci (Elite Ed) 6:341–359

    Article  Google Scholar 

  • Morris SM Jr (2006) Arginine: beyond protein. Am J Clin Nutr 83:508S–512S

    CAS  PubMed  Google Scholar 

  • Pilz S, Meinitzer A, Gaksch M, Grübler M, Verheyen N, Drechsler C, Hartaigh BÓ, Lang F, Alesutan I, Voelkl J et al (2015) Homoarginine in the renal and cardiovascular systems. Amino Acids 47:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Popolo A, Adesso S, Pinto A, Autore G, Marzocco S (2014) l-Arginine and its metabolites in kidney and cardiovascular disease. Amino Acids 46:2271–2286

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LP, Wulster-Radcliffe MC, Aaron DK, Davis TA (2015) Importance of animals in agricultural sustainability and food security. J Nutr 145:1377–1379

    Article  CAS  PubMed  Google Scholar 

  • Ritschel WA (1986) Handbook of basic pharmacokinetics. Drug Intelligence Publications, Hamilton

    Google Scholar 

  • Rose WC (1957) The amino acid requirements of adult man. Nutr Abstr Rev Ser Hum Exp 27:631–647

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Article  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Sawant OB, Wu G, Washburn SE (2015) Maternal l-glutamine supplementation prevents prenatal alcohol exposure-induced fetal growth restriction in ewes. Amino Acids 47:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, Ernst KV, Kelemen MD, Townsend SN, Capriotti A et al (2006) l-Arginine therapy in acute myocardial infarction: the vascular interaction with age in myocardial infarction (VINTAGE) randomized clinical trial. JAMA 295:58–64

    Article  CAS  PubMed  Google Scholar 

  • Shao A, Hathcock JN (2008) Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regul Toxicol Pharmacol 50:376–399

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Davis TA (2014) Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. J Anim Sci Biotechnol 5(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu G (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  CAS  PubMed  Google Scholar 

  • Tan BE, Li XG, Yin YL, Wu ZL, Liu C, Tekwe CD, Wu G (2012) Regulatory roles for l-arginine in reducing white adipose tissue. Front Biosci 17:2237–2246

    Article  Google Scholar 

  • Tsikas D, Wu G (2015) Homoarginine, arginine, and relatives: analysis, metabolism, transport, physiology, and pathology. Amino Acids 47:1697–1702

    Article  CAS  PubMed  Google Scholar 

  • Tsubuku S, Hatayama K, Mawatari K, Smriga M, Kimura T (2004) Thirteen-week oral toxicity study of l-arginine in rats. Int J Toxicol 23:101–105

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Frank JW, Little DR, Dunlap KA, Satterfiled MC, Burghardt RC, Hansen TR, Wu G, Bazer FW (2014a) Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. FASEB J 28:2852–2863

    Article  CAS  PubMed  Google Scholar 

  • Wang XQ, Frank JW, Xu J, Dunlap KA, Satterfield MC, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW (2014b) Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol Reprod 91:59

    Article  PubMed  Google Scholar 

  • Wang XQ, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW (2014c) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian conceptuses. Biol Reprod 90:84

    Article  PubMed  Google Scholar 

  • Windmueller HG, Spaeth AE (1981) Source and fate of circulating citrulline. Am J Physiol 241:E473–E480

    CAS  PubMed  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629

    CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Flynn NE, Yan W, Flynn SP (1996a) Arginine degradation in developing porcine enterocytes. Am J Physiol Gastrointest Liver Physiol 271:G913–G919

    CAS  Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996b) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    CAS  PubMed  Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    CAS  PubMed  Google Scholar 

  • Wu G, Flynn NE, Flynn SP, Jolly CA, Davis PK (1999) Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J Nutr 129:1347–1354

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Jobgen WS, Kim SW, Lassala A, Li P, Matis JH, Meininger CJ, Spencer TE (2007a) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S–1680S

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007b) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci. doi:10.2527/jas.2016-0478

    Google Scholar 

  • Yang Y, Wu ZL, Jia SC, Dahanayaka S, Feng S, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with l-arginine in rats. Amino Acids 47:1907–1920

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from International Council of Amino Acid Science (Brussels, Belgium), Texas A&M AgriLife Research (H-8200), National Basic Research Program of China (2012CB126305), National Natural Science Foundation of China (31172217 and 31272450), Natural Science Foundation of Hubei Province (2013CFA097 and 2013CFB325), and Hubei Hundred Talent program. We thank Drs. Robert Burghardt, Zhaolai Dai, Gregory Johnson, Xilong Li, Sidney Morris, and Stephen Smith for research collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

The use of animals for our research described in this review article was approved by the Institutional Animal Care and Use Committee of Texas A&M University.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Hou, Y., Hu, S. et al. Catabolism and safety of supplemental l-arginine in animals. Amino Acids 48, 1541–1552 (2016). https://doi.org/10.1007/s00726-016-2245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2245-9

Keywords

Navigation