Advertisement

Amino Acids

, Volume 48, Issue 7, pp 1717–1729 | Cite as

Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties

  • Izabela Behrendt
  • Martyna Prądzińska
  • Marta Spodzieja
  • Aleksandra S. Kołodziejczyk
  • Sylwia Rodziewicz-Motowidło
  • Aneta Szymańska
  • Paulina CzaplewskaEmail author
Original Article

Abstract

Human cystatin C (hCC), like many other amyloidogenic proteins, dimerizes and possibly makes aggregates by subdomain swapping. Inhibition of the process should suppress the fibrillogenesis leading to a specific amyloidosis (hereditary cystatin C amyloid angiopathy, HCCAA). It has been reported that exogenous agents like monoclonal antibodies against cystatin C are able to suppress formation of cystatin C dimers and presumably control the neurodegenerative disease. We have studied in detail two monoclonal antibodies (mAbs) representing very different aggregation inhibitory potency, Cyst10 and Cyst28, to find binding sites in hCC sequence responsible for the immunocomplex formation and pave the way for possible immunotherapy of HCCAA. We used the epitope extraction/excision mass spectrometry approach with the use of different enzymes complemented by affinity studies with synthetic hCC fragments as a basic technique for epitope identification. The results were analyzed in the context of hCC structure allowing us to discuss the binding sites for both antibodies. Epitopic sequences for clone Cyst28 which is a highly potent dimerization inhibitor were found in N-terminus, loop 1 and 2 (L1, L2) and fragments of β2 and β3 strands. The crucial difference between conformational epitope sequences found for both mAbs seems to be the lack of interactions with hCC via N-terminus and the loop 1 in the case of mAb Cyst10. Presumably the interactions of mAbs with hCC via L1 and β sheet fragments make the hCC structure rigid and unable to undergo the swapping process.

Keywords

Mass spectrometry Human cystatin C Epitope Monoclonal antibodies 

Notes

Acknowledgments

This work has been supported by the grant from National Science Centre, Preludium 2011/01/N/ST5/05642 (Izabela Behrendt). We also would like to acknowledge the support of DS 530-8440-D379-13 National Science Centre Sonata Bis1 based on the Decision No. DEC-2012/05/E/ST5/03796 (grant to dr Paulina Czaplewska). The project was also supported by Mobi4Health EU project which allowed us to use high quality mass spectrometers. Mobi4Helath project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 316094 and from the Ministry of Science and Higher Education. We would like to thank NanoTemper Technologies GmbH Company for the opportunity to use the Monolith NT.115 system for the measurement of the dissociation constant of the complex hCC-Cyst10/28.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human participation

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

726_2016_2242_MOESM1_ESM.docx (621 kb)
Supplementary material 1 (DOCX 620 kb)

References

  1. Abrahamson M, Ritonja A, Brown MA et al (1987) Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J Biol Chem 262:9688–9694PubMedGoogle Scholar
  2. Alvarez-Fernandez M, Barrett AJ, Gerhartz B et al (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 274:19195–19203CrossRefPubMedGoogle Scholar
  3. Anglister J, Scherf T, Zilber B et al (1993) Two-dimensional NMR investigations of the interactions of antibodies with peptide antigens. FASEB J 7:1154–1162PubMedGoogle Scholar
  4. Björck L, Grubb A, Kjellén L (1990) Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J Virol 64:941–943PubMedPubMedCentralGoogle Scholar
  5. Bokarewa M, Abrahamson M, Levshin N et al (2007) Cystatin C binds serum amyloid A, downregulating its cytokine-generating properties. J Rheumatol 34:1293–1301PubMedGoogle Scholar
  6. Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22:4–23. doi: 10.1006/meth.2000.1031 CrossRefPubMedGoogle Scholar
  7. Cerutti ML, Ferreiro DU, Sanguineti S et al (2006) Antibody recognition of a flexible epitope at the DNA binding site of the human papillomavirus transcriptional regulator E2. Biochemistry 45:15520–15528. doi: 10.1021/bi0615184 CrossRefPubMedGoogle Scholar
  8. Dhungana S, Fessler MB, Tomer KB (2009) Epitope mapping by differential chemical modification of antigens. Methods Mol Biol 524:119–134. doi: 10.1007/978-1-59745-450-6_9 CrossRefPubMedGoogle Scholar
  9. Dodds ED, Seipert RR, Clowers BH et al (2009) Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J Proteome Res 8:502–512. doi: 10.1021/pr800708h CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214CrossRefPubMedGoogle Scholar
  11. Gershoni JM, Roitburd-Berman A, Siman-Tov DD et al (2007) Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 21:145–156CrossRefPubMedGoogle Scholar
  12. Hager-Braun C, Katinger H, Tomer KB (2006) The HIV-neutralizing monoclonal antibody 4E10 recognizes N-terminal sequences on the native antigen. J Immunol 176:7471–7481CrossRefPubMedGoogle Scholar
  13. He JJ, Quiocho FA (1991) A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor. Science 251:1479–1481CrossRefPubMedGoogle Scholar
  14. Janowski R, Kozak M, Jankowska E et al (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8:316–320. doi: 10.1038/86188 CrossRefPubMedGoogle Scholar
  15. Janowski R, Abrahamson M, Grubb A, Jaskolski M (2004) Domain swapping in N-truncated human cystatin C. J Mol Biol 341:151–160. doi: 10.1016/j.jmb.2004.06.013 CrossRefPubMedGoogle Scholar
  16. Jerabek-Willemsen M, Wienken CJ, Braun D et al (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353. doi: 10.1089/adt.2011.0380 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jerabek-Willemsen M, André T, Wanner R et al (2014) MicroScale Thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113. doi: 10.1016/j.molstruc.2014.03.009 CrossRefGoogle Scholar
  18. Jeyarajah S, Parker CE, Summer MT, Tomer KB (1998) Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody. J Am Soc Mass Spectrom 9:157–165CrossRefPubMedGoogle Scholar
  19. Juszczyk P, Szymanska A, Rodziewicz-Motowidlo S et al (2008) Human cystatin C interactions with amyloidogenic molecules. J Pept Sci 14:29Google Scholar
  20. Juszczyk P, Paraschiv G, Szymanska A et al (2009) Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J Med Chem 52:2420–2428. doi: 10.1021/jm801115e CrossRefPubMedGoogle Scholar
  21. Lescar J, Stouracova R, Riottot MM et al (1997) Three-dimensional structure of an Fab-peptide complex: structural basis of HIV-1 protease inhibition by a monoclonal antibody. J Mol Biol 267:1207–1222. doi: 10.1006/jmbi.1997.0950 CrossRefPubMedGoogle Scholar
  22. Marzilli LA, Golden TR, Cotter RJ, Woods AS (2000) Peptide sequence information derived by pronase digestion and ammonium sulfate in-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 11:1000–1008. doi: 10.1016/S1044-0305(00)00170-7 CrossRefPubMedGoogle Scholar
  23. Mullett WM, Lai EP, Yeung JM (2000) Surface plasmon resonance-based immunoassays. Methods 22:77–91. doi: 10.1006/meth.2000.1039 CrossRefPubMedGoogle Scholar
  24. Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550. doi: 10.1080/10408360490504934 CrossRefPubMedGoogle Scholar
  25. Nilsson M, Wang X, Rodziewicz-Motowidlo S et al (2004) Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J Biol Chem 279:24236–24245. doi: 10.1074/jbc.M402621200 CrossRefPubMedGoogle Scholar
  26. Olafsson I, Löfberg H, Abrahamson M, Grubb A (1988) Production, characterization and use of monoclonal antibodies against the major extracellular human cysteine proteinase inhibitors cystatin C and kininogen. Scand J Clin Lab Invest 48:573–582CrossRefPubMedGoogle Scholar
  27. Orlikowska M, Jankowska E, Kołodziejczyk R et al (2011) Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C. J Struct Biol 173:406–413. doi: 10.1016/j.jsb.2010.11.009 CrossRefPubMedGoogle Scholar
  28. Östner G, Lindström V, Postnikov AB et al (2011) High throughput testing of drug library substances and monoclonal antibodies for capacity to reduce formation of cystatin C dimers to identify candidates for treatment of hereditary cystatin C amyloid angiopathy. Scand J Clin Lab Invest 71:676–682. doi: 10.3109/00365513.2011.621026 CrossRefPubMedGoogle Scholar
  29. Papac DI, Hoyes J, Tomer KB (1994) Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry. Protein Sci 3:1485–1492. doi: 10.1002/pro.5560030914 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Parham P (1983) On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol 131:2895–2902PubMedGoogle Scholar
  31. Parker CE, Tomer KB (2002) MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol Biotechnol 20:49–62. doi: 10.1385/MB:20:1:049 CrossRefPubMedGoogle Scholar
  32. Parker CE, Papac DI, Trojak SK, Tomer KB (1996) Epitope mapping by mass spectrometry: determination of an epitope on HIV-1 IIIB p26 recognized by a monoclonal antibody. J Immunol 157:198–206PubMedGoogle Scholar
  33. Peter JF, Tomer KB (2001) A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal Chem 73:4012–4019CrossRefPubMedGoogle Scholar
  34. Ponomarenko JV, Van Regenmortel MHV (2009) B cell epitope prediction. Wiley-BlackwellGoogle Scholar
  35. Seidel SA, Dijkman PM, Lea WA et al (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315. doi: 10.1016/j.ymeth.2012.12.005 CrossRefPubMedGoogle Scholar
  36. Simmons DT (1988) Geometry of the simian virus 40 large tumor antigen-DNA complex as probed by protease digestion. Proc Natl Acad Sci USA 85:2086–2090CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sladewska A, Szymanska A, Kordalska M et al (2011) Identification of the epitope for anti-cystatin C antibody. J Mol Recognit 24:687–699. doi: 10.1002/jmr.1100 CrossRefPubMedGoogle Scholar
  38. Spodzieja MS, Szymanska A, Sladewska A et al (2010) Characterization of human Cystatin C (hCC)—Serum Amyloid A (SAA) complex. J Pept Sci 16:112Google Scholar
  39. Spodzieja M, Szymańska A, Kołodziejczyk A et al (2012) Interaction of serum amyloid A with human cystatin C–identification of binding sites. J Mol Recognit 25:513–524. doi: 10.1002/jmr.2220 CrossRefPubMedGoogle Scholar
  40. Spodzieja M, Rafalik M, Szymańska A et al (2013) Interaction of serum amyloid A with human cystatin C–assessment of amino acid residues crucial for hCC-SAA formation (part II). J Mol Recognit 26:415–425. doi: 10.1002/jmr.2283 CrossRefPubMedGoogle Scholar
  41. Szymanska A, Jankowska E, Orlikowska M et al (2012) Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Front Mol Neurosci 5:82CrossRefPubMedPubMedCentralGoogle Scholar
  42. Szymańska A, Radulska A, Czaplewska P et al (2009) Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region. Acta Biochim Pol 56:455–463PubMedGoogle Scholar
  43. Wahlbom M, Wang X, Lindström V et al (2007) Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem 282:18318–18326. doi: 10.1074/jbc.M611368200 CrossRefPubMedGoogle Scholar
  44. Wang LF, Yu M (2004) Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr Drug Targets 5:1–15CrossRefPubMedGoogle Scholar
  45. Wienken CJ, Baaske P, Rothbauer U et al (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100. doi: 10.1038/ncomms1093 CrossRefPubMedGoogle Scholar
  46. Williams JG, Tomer KB, Hioe CE et al (2006) The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry. J Am Soc Mass Spectrom 17:1560–1569. doi: 10.1016/j.jasms.2006.06.011 CrossRefPubMedGoogle Scholar
  47. Zhang H, Cui W, Gross ML (2014) Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 588:308–317. doi: 10.1016/j.febslet.2013.11.027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Izabela Behrendt
    • 1
  • Martyna Prądzińska
    • 1
  • Marta Spodzieja
    • 1
  • Aleksandra S. Kołodziejczyk
    • 1
  • Sylwia Rodziewicz-Motowidło
    • 1
  • Aneta Szymańska
    • 1
  • Paulina Czaplewska
    • 2
    Email author
  1. 1.Department of Biomedical Chemistry, Faculty of ChemistryUniversity of GdanskGdanskPoland
  2. 2.Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of GdanskGdanskPoland

Personalised recommendations