Skip to main content

Advertisement

Log in

Transglutaminase as polyamine mediator in plant growth and differentiation

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transglutaminases (TGases) are ubiquitous enzymes catalyzing many biological reactions. The best-known TGase activity, namely the transamidation of specific proteins by polyamines (PAs), has been studied in plants to verify if TGase is a mediator of PAs mechanism of action to re-interpret some of PAs effects. Usually, the TGase activity is present at basal level in plant cells, but it can be induced by internal or external events or stresses, like rehydration, wounding, light, developmental differentiation and programmed cell death (PCD). Here, two models of induced growth are presented, namely pollen apical growth and dedifferentiation followed by reacquisition of the pluripotency of already differentiated cells. Moreover, PAs and TGase involvement during the differentiation and the activity of organelles and finally during the terminal organ differentiation or self-incompatibility-induced PCD are reported. In all of these models, TGase plays a role. The enzyme was detected in several cell compartments, like cytosol, chloroplasts and possibly mitochondria, microsomal fraction, cell wall and also extracellularly. The products of TGase catalysis, modified with PAs, mainly consist of high molecular mass complexes. Among the protein substrates until now identified we mention the cytoskeletal proteins, actin and tubulin, whose PA modification also affects their interaction with motor proteins and the dynamic of cytoskeleton. The most widely studied substrates are component of chloroplast photosystems, in particular light-harvesting complexes, whose modification is light dependent and whose differentiation and size are affected by TGase, thereby conditioning photosynthetic efficiency and photoprotection. Finally, modification of cell wall substrates affects wall growth and reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PAs:

Polyamines

PCA:

Perchloric acid

PCD:

Programmed cell death

LHCII:

Light-harvesting complex of photosystem II

PAO:

Polyamine oxidase

PNGase:

Peptide: N-glycanase

PSII:

Photosystem II

Put:

Putrescine

Spd:

Spermidine

SI:

Self-incompatible

Spm:

Spermine

TCA:

Trichloroacetate

TGase:

Transglutaminase

References

  • Aloisi I, Cai G, Tumiatti V, Minarini A, Del Duca S (2015) Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death. Plant Sci 239:92–105

    Article  CAS  PubMed  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154(2):516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambastha V, Tripathy BC, Tiwari BS (2015) Programmed cell death in plants: a chloroplastic connection. Plant Signal Behav 10(2):e989752. doi:10.4161/15592324.2014.989752

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreadakis A, Kotzabasis K (1996) Changes in the biosynthesis and catabolism of polyamines in isolated plastids during chloroplast photodevelopment. J Photochem Photobiol B 33:163–170

    Article  CAS  Google Scholar 

  • Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA (2014) Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front Plant Sci 5:132. doi:10.3389/fpls.2014.00132

    Article  PubMed  PubMed Central  Google Scholar 

  • Beninati S, Bergamini CM, Piacentini M (2009) An overview of the first 50 years of transglutaminase research. Amino Acids 36:591–598

    Article  CAS  PubMed  Google Scholar 

  • Beninati S, Iorio RA, Tasco G, Serafini-Fracassini D, Casadio R, Del Duca S (2013) Expression of different forms of transglutaminases by immature cells of Helianthus tuberosus sprout apices. Amino Acids 44(1):271–283. doi:10.1007/s00726-012-1411-y

    Article  CAS  PubMed  Google Scholar 

  • Bertossi F, Bagni N, Moruzzi G, Caldarera CM (1965) Spermine as a new growth-promoting substance for Helianthus tuberosus (Jerusalem artichoke) in vitro. Experientia 21:81–82

    Article  Google Scholar 

  • Bortolotti C, Cordeiro A, Alcazar R, Borrell A, Culianez-Macia FA, Tiburcio AF, Altabella T (2004) Localization of arginine decarboxylase in tobacco plants. Physiol Plant 120(1):84–92. doi:10.1111/j.0031-9317.2004.0216.x

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Della Mea M, Faleri C, Fattorini L, Aloisi I, Serafini-Fracassini D, Del Duca S (2015a) Spermine either delays or promotes cell death in Nicotiana tabacum L. corolla depending on the floral developmental stage and affects the distribution of transglutaminase. Plant Sci 241:11–22

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Sobieszczuk-Nowicka E, Aloisi I, Fattorini L, Serafini-Fracassini D, Del Duca S (2015b) Polyamines are common players in different facets of plant programmed cell death. Amino Acids 47(1):27–44. doi:10.1007/s00726-014-1865-1

    Article  CAS  PubMed  Google Scholar 

  • Campos A, Carvajal-Vallejos PK, Villalobos E, Franco CF, Almeida AM, Coelho AV, Torné JM, Santos M (2010) Characterization of Zea mays L. plastidial transglutaminase: interactions with thylakoid membrane proteins. Plant Biol 12:712–716

    Article  Google Scholar 

  • Campos N, Castañon S, Urreta I, Santos M, Torné JM (2013) Rice transglutaminase gene: identification, protein expression, functionality, light dependence and specific cell location. Plant Sci 206:97–110

    Article  Google Scholar 

  • Claparols MI, Bassie L, Miro B, Del Duca S, Rodriguez-Montesinos J, Christou P, Serafini-Fracassini D, Capell T (2004) Transgenic rice as a vehicle for the production of the industrial enzyme transglutaminase. Transgenic Res 13:195–199. doi:10.1023/B:TRAG.0000026073.96199.c4

    Article  CAS  PubMed  Google Scholar 

  • De Los Angeles A, Ferrari F, Xi R, Fujiwara Y, Benvenisty N, Deng H, Hochedlinger K, Jaenisch R, Lee S, Leitch HG, Lensch MW, Lujan E, Pei D, Rossant J, Wernig M, Perk PJ, Daley GQ (2015) Hallmarks of pluripotency. Nature 525:469–478. doi:10.1038/nature15515

    Article  PubMed  Google Scholar 

  • Del Duca S, Favali A, Serafini-Fracassini D, Pedrazzini R (1993) Transglutaminase-like activity during greening and growth of Helianthus tuberosus explants. Protoplasma 174:1–9

    Article  Google Scholar 

  • Del Duca S, Tidu V, Bassi R, Serafini-Fracassini D, Esposito C (1994) Identification of transglutaminase activity and its substrates in isolated chloroplast of Helianthus tuberosus. Planta 193:283–289

    Article  Google Scholar 

  • Del Duca S, Beninati S, Serafini-Fracassini D (1995) Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem J 305:233–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Duca S, Bregoli AM, Bergamini C, Serafini-Fracassini D (1997) Transglutaminase-catalyzed modification of cytoskeletal proteins by polyamines during the germination of Malus domestica pollen. Sex Plant Reprod 10(10):89–95

    Article  Google Scholar 

  • Del Duca S, Allué Creus J, D’Orazi D, Dondini L, Bregoli AM, Serafini-Fracassini D (2000a) Tuber vegetative stages and cell cycle in Helianthus tuberosus: protein pattern and their modification by spermidine. J Plant Physiol 156:17–25

    Article  Google Scholar 

  • Del Duca S, Dondini L, Della Mea M, Munoz de Rueda P, Serafini-Fracassini D (2000b) Factors affecting transglutaminase activity catalysing polyamine conjugation to endogenous substrates in the entire chloroplast. Plant Physiol Biochem 38:429–439

    Article  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Bonner P, Cresti M, Cai G (2009) Effects of post-translational modifications catalysed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418(3):651–664. doi:10.1042/BJ20081781

    Article  PubMed  Google Scholar 

  • Del Duca S, Cai G, Di Sandro A, Serafini-Fracassini D (2010) Compatible and self-incompatible pollination in Pyrus communis displays different polyamine levels and transglutaminase activity. Amino Acids 38(2):659–667. doi:10.1007/s00726-009-0426-5

    Article  PubMed  Google Scholar 

  • Del Duca S, Faleri C, Iorio RA, Cresti M, Serafini-Fracassini D, Cai G (2013a) Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics. Plant Physiol 161(4):1706–1721. doi:10.1104/pp.112.212225

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Cai G (2013b) An unconventional road for the secretion of transglutaminase in pollen tubes? Plant Signal Behav 8(6):e24446–e24446

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Cai G (2014a) Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. Front Plant Sci 5:120. doi:10.3389/fpls.2014.00120

    PubMed  PubMed Central  Google Scholar 

  • Del Duca S, Verderio E, Serafini-Fracassini D, Iorio RA, Cai G (2014b) The plant extracellular transglutaminase: what mammal analogues tell. Amino Acids 46:777–792. doi:10.1007/s00726-013-1605-y

    Article  PubMed  Google Scholar 

  • Della Mea M, Caparros-Ruiz D, Claparols I, Serafini-Fracassini D, Rigau J (2004a) AtPng1p. The first plant transglutaminase. Plant Physiol 135(4):2046–2054. doi:10.1104/pp.104.042549

    Article  CAS  PubMed  Google Scholar 

  • Della Mea M, Di Sandro A, Dondini L, Del Duca S, Vantini F, Bergamini C, Bassi R, Serafini-Fracassini D (2004b) A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a light-dependent way. Planta 219(5):754–764. doi:10.1007/s00425-004-1278-6

    Article  CAS  PubMed  Google Scholar 

  • Della Mea M, De Filippis F, Genovesi V, Serafini Fracassini D, Del Duca S (2007) The acropetal wave of developmental cell death of tobacco corolla is preceded by activation of transglutaminase in different cell compartments. Plant Physiol 144(2):1211–1222. doi:10.1104/pp.106.092072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Sandro A, Del Duca S, Verderio E, Hargreaves AJ, Scarpellini A, Cai G, Cresti M, Faleri C, Iorio RA, Hirose S, Furutani Y, Coutts IG, Griffin M, Bonner PL, Serafini-Fracassini D (2010) An extracellular transglutaminase is required for apple pollen tube growth. Biochem J 429(2):261–271. doi:10.1042/BJ20100291

    Article  PubMed  Google Scholar 

  • Diepold A, Li G, Lennarz WJ, Nurnberger T, Brunner F (2007) The Arabidopsis AtPNG1 gene encodes a peptide: N-glycanase. Plant J 52(1):94–104

    Article  CAS  PubMed  Google Scholar 

  • Dondini L, Bonazzi S, Serafini-Fracassini D (2000) Recovery of growth capacity by polyamines and of chloroplast transglutaminase activity in a polyamine-deficient variant strain of Dunaliella salina. J Plant Physiol 157:473–480

    Article  CAS  Google Scholar 

  • Dondini L, Bonazzi S, Del Duca S, Bregoli AM, Serafini-Fracassini D (2001) Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyamine-deficient variant strain of Dunaliella salina and in its wild type. J Plant Physiol 158:185–197

    Article  CAS  Google Scholar 

  • Dondini L, Del Duca S, Dall’Agata L, Bassi R, Gastaldelli M, Della Mea M, Di Sandro A, Claparols I, Serafini-Fracassini D (2003) Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta 217(1):84–95. doi:10.1007/s00425-003-0998-3

    CAS  PubMed  Google Scholar 

  • D’Orazi D, Bagni N (1987) In vitro interactions between polyamines and pectic substances. Biochem Biophys Res Commun 148:1259–1263

    Article  PubMed  Google Scholar 

  • Gaillochet C, Lohmann JU (2015) The never-ending story: from pluripotency to plant developmental plasticity. Development 142(13):2237–2249. doi:10.1242/dev.117614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile A, Antognoni F, Iorio RA, Distefano G, Las Casas G, La Malfa S, Serafini-Fracassini D, Del Duca S (2012) Polyamines and transglutaminase activity are involved in compatible and self-incompatible pollination of Citrus grandis. Amino Acids 42(2–3):1025–1035. doi:10.1007/s00726-011-1017-9

    Article  CAS  PubMed  Google Scholar 

  • Gundemir S, Colak G, Tucholski J, Johnson GV (2012) Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta 1823(2):406–419

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK, Kunkel JG, Rounds CM, Winship LJ (2012) Calcium entry into pollen tubes. Trends Plant Sci 17(1):32–38. doi:10.1016/j.tplants.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  • Icekson I, Apelbaum A (1987) Evidence for transglutaminase activity in plant tissue. Plant Physiol 84(4):972–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannidis NE, Lopera O, Santos M, Torné JM, Kotzabasis K (2012) Role of plastid transglutaminase in LHCII polyamination and thylakoid electron and proton flow. PLoS One 7(7):e41979. doi:10.1371/journal.pone.0041979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Feng Z, Liu H, Zhu J (2015) Involvement of plant stem cells or stem cell-like cells in dedifferentiation. Front Plant Sci 6:1028. doi:10.3389/fpls.2015.01028 (eCollection)

    PubMed  PubMed Central  Google Scholar 

  • Lee MM, Lee SH, Park KY (1997) Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. J Plant Physiol 151:68–73

    Article  CAS  Google Scholar 

  • Legocka J, Zajchert I (1999) Role of spermidine in the stabilization of the apoprotein of the light-harvesting chlorophyll a/b-protein complex of photosystem II during leaf senescence process. Acta Physiol Plant 21:127–132. doi:10.1007/s11738-999-0066-0

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi:10.1146/annurev.arplant.57.032905.105316

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4(2):140–156. doi:10.1038/nrm1014

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler A, Cardenas L, Kunkel JG, Hepler PK (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton 64(3):217–232. doi:10.1002/cm.20181

    Article  PubMed  Google Scholar 

  • Ma W, Berkowitz GA (2011) Cyclic nucleotide gated channel and Ca2+-mediated signal transduction during plant senescence signaling. Plant Signal Behav 6(3):413–415 (pii:14356)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malorni W, Farrace MG, Matarrese P, Tinari A, Ciarlo L, Mousavi-Shafaei P, D’Eletto M, Di Giacomo G, Melino G, Palmieri L, Rodolfo C, Piacentini M (2009) The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16(11):1480–1492. doi:10.1038/cdd.2009.100

    Article  CAS  PubMed  Google Scholar 

  • Masahara-Negishi Y, Hosomi A, Della Mea M, Serafini-Fracassini D, Suzuki T (2012) A plant peptide: N-glycanase orthologue facilitates glycoprotein ER-associated degradation in yeast. Biochim Biophys Acta 1820(10):1457–1462. doi:10.1016/j.bbagen.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi Y, Applewhite PB, Galston AW (1989) Polyamine binding to proteins in oat and Petunia protoplasts. Plant Physiol 91:738–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossetti U, Serafini-Fracassini D, Del Duca S (1987) Conjugated polyamines during dormancy and activation of tuber of Jerusalem artichoke. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones. Structure, metabolism and function. Deutscher Verlag der Wissenschaften, Berlin, pp 369–375

  • Navakoudis E, Vrentzou K, Kotzabasis K (2007) A polyamine- and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. Biochim Biophys Acta 1767(4):261–271. doi:10.1016/j.bbabio.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  • Ortigosa SM, Diaz-Vivancos P, Clemente-Moreno MJ, Pinto-Marijuan M, Fleck I, Veramendi J, Santos M, Hernandez JA, Torné JM (2010) Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. Planta 232(3):593–605. doi:10.1007/s00425-010-1185-y

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Jiang Y, Chang M, Liu X, Zhang R, Huang S (2015) Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci 5:786. doi:10.3389/fpls.2014.00786

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers HJ (2013) From models to ornamentals: how is flower senescence regulated? Plant Mol Biol 82(6):563–574. doi:10.1007/s11103-012-9968-0

    Article  CAS  PubMed  Google Scholar 

  • Ruberti C, Barizza E, Bodner M, La Rocca N, De Michele R, Carimi F, Lo Schiavo F, Zottini M (2014) Mitochondria change dynamics and morphology during grapevine leaf senescence. PLoS One 9(7):e102012. doi:10.1371/journal.pone.0102012

    Article  PubMed  PubMed Central  Google Scholar 

  • Serafini-Fracassini D, Del Duca S (2008) Tranglutaminases: widespread cross-linking enzymes in plants. Ann Bot 102:145–152. doi:10.1093/aob/mcn075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, D’Orazi D (1988) First evidence for polyamine conjugation mediated by an enzymic activity in plants. Plant Physiol 87(3):757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, Torrigiani P (1989) Polyamine conjugation during the cell cycle of Helianthus tuberosus: non enzymatic and transglutaminase-like binding activity. Plant Physiol Biochem 27:659–668

    CAS  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, Beninati S (1995) Plant transglutaminases. Phytochemistry 40:355–365

    Article  CAS  PubMed  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, Monti F, Poli F, Sacchetti G, Bregoli AM, Biondi S, Della Mea M (2002) Transglutaminase activity during senescence and programmed cell death in the corolla of tobacco (Nicotiana tabacum) flowers. Cell Death Differ 9(3):309–321. doi:10.1038/sj.cdd.4400954

    Article  CAS  PubMed  Google Scholar 

  • Serafini-Fracassini D, Della Mea M, Tasco G, Casadio R, Del Duca S (2009) Plant and animal transglutaminases: do similar functions imply similar structures? Amino Acids 36(4):643–657. doi:10.1007/s00726-008-0131-9

    Article  CAS  PubMed  Google Scholar 

  • Serafini-Fracassini D, Di Sandro A, Del Duca S (2010) Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiol Biochem 48(7):602–611. doi:10.1016/j.plaphy.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Sindhu RK, Cohen SS (1984) Subcellular localization of spermidine synthase in the protoplasts of chinese cabbage leaves. Plant Physiol 76(1):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobieszczuk-Nowicka E, Legocka J (2014) Plastid-associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. Plant Biol (Stuttg) 16(2):297–305. doi:10.1111/plb.12058

    Article  CAS  Google Scholar 

  • Sobieszczuk-Nowicka E, Wieczorek P, Legocka J (2009) Kinetin affects the level of chloroplast polyamines and transglutaminase activity during senescence of barley leaves. Acta Biochim Pol 56(2):255–259

    CAS  PubMed  Google Scholar 

  • Sobieszczuk-Nowicka E, Zmienko A, Samelak-Czajka A, Luczak M, Pietrowska-Borek M, Iorio RA, Del Duca S, Figlerowicz M, Legocka J (2015) Dark-induced senescence of barley leaves involves activation of plastid transglutaminases. Amino Acids 47(4):825–838. doi:10.1007/s00726-014-1912-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spurlin TA, Bhadriraju K, Chung KH, Tona A, Plant AL (2009) The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling. Biomaterials 30(29):5486–5496. doi:10.1016/j.biomaterials.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kakehi J (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105(1):1–6. doi:10.1093/aob/mcp259

    Article  CAS  PubMed  Google Scholar 

  • Tassoni A, Bagni N, Ferri M, Franceschetti M, Khomutov A, Marques MP, Fiuza SM, Simonian AR, Serafini-Fracassini D (2010) Helianthus tuberosus and polyamine research: past and recent applications of a classical growth model. Plant Physiol Biochem 48(7):496–505

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  PubMed  Google Scholar 

  • Torrigiani P, Serafini-Fracassini D, Biondi S, Bagni N (1986) Evidence for the subcellular localization of polyamines and their biosynthetic enzymes in plant cells. J Plant Physiol 124:23–29

    Article  CAS  Google Scholar 

  • Villalobos E, Santos M, Talavera D, Rodriguez-Falcon M, Torné JM (2004) Molecular cloning and characterization of a Zea mays transglutaminase complementary DNA. Gene 336:93–104

    Article  CAS  PubMed  Google Scholar 

  • Votyakova TV, Wallace HM, Dunbar B, Wilson SB (1999) The covalent attachment of polyamines to proteins in plant mitochondria. Eur J Biochem 260(1):250–257

    Article  CAS  PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181(5):593–603. doi:10.1016/j.plantsci.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Yoo JO, Lim YC, Kim YM, Ha KS (2012) Transglutaminase 2 promotes both caspase-dependent and caspase-independent apoptotic cell death via the calpain/Bax protein signaling pathway. J Biol Chem 287(18):14377–14388. doi:10.1074/jbc.M111.32607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Del Duca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research did not involve Human Participants and/or Animals.

Funding

Some of the data presented here comes from recent work in our labs that was supported by Bologna University grants RFO 2012–2013[Grant No. RFO12DELDU and RFO13DELDU]) to S. D. D. and the POR FESR 2007–2013 (project “My Darling Clementine”) to S. D. D.

Additional information

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloisi, I., Cai, G., Serafini-Fracassini, D. et al. Transglutaminase as polyamine mediator in plant growth and differentiation. Amino Acids 48, 2467–2478 (2016). https://doi.org/10.1007/s00726-016-2235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2235-y

Keywords

Navigation