Skip to main content
Log in

Proline hydration at low temperatures: its role in the protection of cell from freeze-induced stress

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The natural amino acid l-α-proline (Pro) is a compatible osmolyte which accumulates in the cell cytoplasm to protect structure and function of various proteins and enzymes under abiotic stress, like for instance, freezing. It is assumed that the interactions of Pro with intracellular water play an important role in the protection mechanism. However, until now the details of these interactions are far from being fully understood. We present results of a theoretical study of the hydration of Pro zwitterion (Pro-ZW) in water in the temperature range of 298–248 K. The data were obtained by the integral equation method in the framework of the 1D- and 3D-RISM approaches. The structural data were analyzed in terms of radial and spatial distribution functions. The observed features of Pro-ZW hydration are discussed from the position of the biological role of Pro as a cryoprotectant. In particular, it was found that under cooling conditions this protectant is able to bind a significant amount of water molecules and, thus, is helping to keep water inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47:411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Annu Rep Comp Chem Washington DC 4:217–241

    Article  CAS  Google Scholar 

  • Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  • Brock TD (1967) Life at high temperatures. Science 158:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Burritt DJ (2012) Proline and the cryopreservation of plant tissues: functions and practical applications, in current frontiers in cryopreservation. In: Katkov I (ed) Current frontiers in cryopreservation, Chapter 20. InTech, Rijeka, Croatia, pp 415–430

  • Case DA, Berryman JT, Betz RM et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  • Chandler D, Andersen HC (1972) Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J Chem Phys 57:1930–1937

    Article  CAS  Google Scholar 

  • Chu TM, Jusaitis M, Aspinall D, Paleg LG (1978) 0 Accumulation of free proline at low temperatures. Physiol Plant 43:254–260

    Article  CAS  Google Scholar 

  • Chuev GN, Valiev M, Fedotova MV (2012) Integral equation theory of molecular solvation coupled with quantum mechanical/molecular mechanics method in NWChem package. JCTC 81:246–1254

    Google Scholar 

  • Civera M, Sironi M, Fornili SL (2005) Unusual properties of aqueous solutions of l-proline: a molecular dynamics study. Chem Phys Lett 415:274–278

    Article  CAS  Google Scholar 

  • Clarke A, Morris GJ, Fonseca F, Murray BJ, Acton E, Price HC (2013) A low temperature limit for life on earth. PLoS One 8:e66207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Santi C, Durante L, Vecchio PD et al (2012) Thermal stabilization of psychrophilic enzymes: a case study of the cold-active hormone-sensitive lipase from psychrobacter sp. TA144. Biotechnol Prog 28:946–952

    Article  PubMed  Google Scholar 

  • Dunn WJ III, Nagy PI (1990) Monte Carlo studies on aqueous solutions of methylamine and acetonitrile: hydration of sp3 and sp nitrogen. J Phys Chem 94:2099–2105

    Article  CAS  Google Scholar 

  • Eiberweiser A, Nazet A, Kruchinin S, Fedotova M, Buchner R (2015) Hydration and ion binding of the osmolyte ectoine. J Phys Chem B 119:15203–15211

    Article  CAS  PubMed  Google Scholar 

  • Fedotova MV (2006) Special features of ion association in concentrated licl aqueous solutions at various temperature. Rus J Gen Chem 76:1898–1906

    Article  CAS  Google Scholar 

  • Fedotova MV, Dmitrieva OA (2013) Structural parameters of alanine zwitterion hydration from the data of the integral equation method in the RISM approximation. Rus Chem Bull 62:1974–1978

    Article  CAS  Google Scholar 

  • Fedotova MV, Dmitrieva OA (2014) Hydration Structure of –NH2+ and –COO of l-Proline Zwitterion from Data of 1D-RISM integral equation method. Rus J Phys Chem A 88:794–797

    Article  CAS  Google Scholar 

  • Fedotova MV, Dmitrieva OA (2015a) Ion-Selective Interactions of Biologically Relevant Inorganic Ions with Alanine Zwitterion—A 3D-RISM study. Amino Acids 47:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Fedotova MV, Dmitrieva OA (2015b) Characterization of selective binding of biologically relevant inorganic ions with the proline zwitterion by 3D-RISM theory. New J Chem 39:8594–8601

    Article  CAS  Google Scholar 

  • Fedotova MV, Holovko MF (2011) The integral equation method in equilibrium statistical theory of liquids. In: Tschivadze AY (ed) Theoretical and experimental methods of solution chemistry (Monograph in Russian), Chapter 2. Prospect, Moscow, pp 68–152

  • Fedotova MV, Kruchinin SE (2012a) Structural parameters of glycine zwitterion hydration from the data of the integral equation method in the RISM approach. Rus J Phys Chem A 86:1830–1835

    Article  CAS  Google Scholar 

  • Fedotova MV, Kruchinin SE (2012b) 1D-RISM study of glycine zwitterion hydration and ion-molecular complex formation in aqueous NaCl solutions. J Mol Liq 169:1–7

    Article  CAS  Google Scholar 

  • Fedotova MV, Kruchinin SE (2013a) The hydration of aniline and benzoic acid: analysis of radial and spatial distribution functions. J Mol Liq 179:27–33

    Article  CAS  Google Scholar 

  • Fedotova MV, Kruchinin SE (2013b) Hydration of para-aminobenzoic acid (PABA) and its anion—the view from statistical mechanics. J Mol Liq 186:90–97

    Article  CAS  Google Scholar 

  • Fedotova MV, Kruchinin SE (2014) Ion-Binding of Glycine Zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions. Biophys Chem 190–191:25–31

    Article  PubMed  Google Scholar 

  • Freimark D, Sehl C, Weber C et al (2011) Systematic parameter optimization of a Me 2 SO-and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 63:67–75

    Article  CAS  PubMed  Google Scholar 

  • Gray CG, Gubbins KE (1985) Theory of molecular fluids. Clarendon Press, Oxford

    Google Scholar 

  • Gribkov AA, Fedotova MV, Trostin VN (2002) The structural properties of concentrated aqueous solutions of lithium bromide and iodide at low temperatures. Rus J Phys Chem A 76:1973–1980

    Google Scholar 

  • Hansen JP, McDonald IR (2006) Theory of simple liquids, 3rd edn. Academic Press, New York

    Google Scholar 

  • Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  • Hayat Sh, Hayat Q, Alyemeni MN, Sh Wani A, Pichtel J, Ahmad A (2012) Role of proline under changing environments. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heber U, Tyankova L, Santarius KA (1971) Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim Biophys Acta (BBA) Biomembr 241:578–592

    Article  CAS  Google Scholar 

  • Hirata F (2003) Molecular theory of solvation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Holmstrup M, Costanzo JP, Lee RE (1999) Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. J Comp Physiol B 169:207–214

    Article  Google Scholar 

  • Kar K, Kishore N (2007) Enhancement of thermal stability and inhibition of protein aggregation by osmolytic effect of hydroxyproline. Biopolymers 87:339–351

    Article  CAS  PubMed  Google Scholar 

  • Kovalenko A (2003) Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces. In: Hirata F (ed) Molecular Theory of Solvation, Chapt 4. Kluwer Academic Publishers, Dordrecht, pp 169–276 (and references therein)

    Google Scholar 

  • Kovalenko A, Hirata F (1999a) Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model. J Chem Phys 110:10095–10112

    Article  CAS  Google Scholar 

  • Kovalenko A, Hirata F (1999b) Potential of mean force between two molecular ions in a polar molecular solvent: a study by the three-dimensional reference interaction site model. J Phys Chem B 103:7942–7957

    Article  CAS  Google Scholar 

  • Kovalenko A, Hirata F (2000) Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method. J Chem Phys 113:2793–2805

    Article  CAS  Google Scholar 

  • Kovalenko A, Hirata F (2001) First-principles realization of a Van Der Waals–Maxwell theory for water. Chem Phys Lett 349:496–502

    Article  CAS  Google Scholar 

  • Kovalenko A, Ten-no S, Hirata F (1999) Solution of three-dimensional reference interaction site model and hypernetted chain equations for simple point charge water by modified method of direct inversion in iterative subspace. J Comput Chem 20:928–936

    Article  CAS  Google Scholar 

  • Kusalik PG, Bergman D, Laaksonen A (2000) The local structure in liquid methylamine and methylamine–water mixtures. J Chem Phys 113:8036–8046

    Article  CAS  Google Scholar 

  • Levy-Sakin M, Berger O, Feibish N et al (2014) The influence of chemical chaperones on enzymatic activity under thermal and chemical stresses: common features and variation among diverse chemical families. PLoS One 9:e88541

    Article  PubMed  PubMed Central  Google Scholar 

  • Luchko T, Joung IS, Case DA (2012) Integral equation theory of biomolecules and electrolytes. In: Shlick T (ed) Innovations in biomolecular modeling and simulations, vol 1. RSC Publishing, Dorchester, pp 51–86

    Chapter  Google Scholar 

  • Lue L, Blankschtein D (1992) Liquid-state theory of hydrocarbon-water systems: application to methane, ethane, and propane. J Phys Chem 92:8582–8594

    Article  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants and animals—fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  CAS  PubMed  Google Scholar 

  • Matysik J, Bhalu Alia B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • McLain SE, Soper AK, Terry AE, Watts A (2007) Structure and hydration of l-proline in aqueous solutions. J Phys Chem B 111:4568–4580

    Article  CAS  PubMed  Google Scholar 

  • Monson PA, Morris GP (1990) Recent progress in the statistical mechanics of interaction site fluids. In: Prigogine I, Rice SA (eds) Adv. Chem. Phys. Wiley, New York, pp 451–550

    Chapter  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2002) Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J Biosci Bioeng 94:390–394

    Article  CAS  PubMed  Google Scholar 

  • Oparin RD, Fedotova MV, Trostin VN (1999) Investigation of the structure of concentrated aqueous solution of LiCI at low temperatures by the method of integral equations. Rus Chem Bull 48:1858–1863

    Article  CAS  Google Scholar 

  • Oparin RD, Fedotova MV, Gribkov AA, Trostin VN (2003) Structure formation features of water and concentrated aqueous lithium halide solutions at low temperatures from the data of integral equation method. Rus Chem Bull 52:1482–1491

    Article  CAS  Google Scholar 

  • Oparin RD, Fedotova MV, Trostin VN (2004) A study of structure formation in supercooled water by the method of the integral equations. Rus J Phys Chem A 78:188–191

    Google Scholar 

  • Orief Y, Schultze-Mosgau A, Dafopoulos K, Al-Hasani S (2005) Vitrification: will it replace the conventional gamete cryopreservation techniques? Middle East Fert Soc J 10:171–184

    Google Scholar 

  • Pemberton TA, Still BR, Christensen EM, Singh H, Srivastava D, Tanner JJ (2012) Proline: mother nature’s cryoprotectant applied to protein crystallography. Acta Cryst D68:1010–1018

    Google Scholar 

  • Plugatyr A, Nahtigal I, Svishchev IM (2006) Spatial hydration structures and dynamics of phenol in sub- and supercritical water. Chem Phys 124:024507–024515

    Google Scholar 

  • Prevel B, Jal JF, Dupuy-Philon J, Soper AK (1995) Structural characterization of an electrolytic aqueous solution, LiCl:6H2O, in the glass, supercooled liquid and liquid states. J Chem Phys 103:1886–1896

    Article  CAS  Google Scholar 

  • Rajendrakumar CSV, Reddy BVD, Reddy AR (1994) Proline-protein interactions: protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem Biophys Res Commun 201:957–963

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen PH, Jørgensen B, Nielsen J (1997) Aqueous solutions of proline and NaCl studied by differential scanning calorimetry at subzero temperatures. Thermochim Acta 303:23–30

    Article  CAS  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) The effects of three stabilizing agents: proline, betaine, and trehalose on membrane phospholipids. Arch Biochem Biophys 245:134–143

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Partida LG, Setchell BP, Maxwell WM (1998) Effect of compatible solutes and diluent composition on the post-thaw motility of ram sperm. Reprod Fertil Dev 10:347–357

    Article  PubMed  Google Scholar 

  • Sepasi-Tehrani H, Moosavi-Movahedi AA, Ghourchian H et al (2012) Effect of compatible and noncompatible osmolytes on the enzymatic activity and thermal stability of bovine liver catalase. J Biomol Struct Dyn 31:1440–1454

    Article  PubMed  Google Scholar 

  • Shukla D, Schneider CP, Trout BL (2011) Molecular level insight into intra-solvent interaction effects on protein stability and aggregation. Adv Drug Deliv Rev 63:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Stewart GR, Lee JA (1974) The role of proline accumulation in halophytes. Planta 120:279–289

    Article  CAS  PubMed  Google Scholar 

  • Storey KB (1997) Organic solutes in freezing tolerance. Comp Biochem Physiol 117A:319–326

    Article  CAS  Google Scholar 

  • Svishchev IM, Plugatyr A, Nahtigal IG (2008) Spatial hydration maps and dynamics of naphthalene in ambient and supercritical water. J Chem Phys 128:124514–124520

    Article  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a Multifunctional Amino Acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations. Appl Microbiol Biotechnol 81:211–223

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Sakai K, Morida K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  CAS  PubMed  Google Scholar 

  • Terekhova I, Chibunova E, Kumeev R, Kruchinin S, Fedotova M et al (2015) Specific and nonspecific effects of biologically active inorganic salts on inclusion complex formation of cyclodextrins with aromatic carboxylic acids. Chem Eng Sci 122:97–10337

    Article  CAS  Google Scholar 

  • Troitzsch RZ, Vass H, Hossack WJ et al (2008) Molecular mechanisms of cryoprotection in aqueous proline: light scattering and molecular dynamics simulations. J Phys Chem B 112:4290–4297

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Bolen DW (1996) Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm. Biophys J 71:2117–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Yamagami M, Takamuku T, Yamaguchi T et al (1993) X-ray diffraction study on aqueous lithium chloride solution in the temperature range 138–373 K. J Phys Chem 97:10832–10839

    Article  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K et al (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Zhmakin AI (2008) Fundamentals of cryobiology: physical phenomena and mathematical models. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Russian Foundation for Basic Research with Grant 15-43-03004-r_centre_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Fedotova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals.

Additional information

Handling Editor: H. Hesse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, M.V., Dmitrieva, O.A. Proline hydration at low temperatures: its role in the protection of cell from freeze-induced stress. Amino Acids 48, 1685–1694 (2016). https://doi.org/10.1007/s00726-016-2232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2232-1

Keywords

Navigation