Advertisement

Amino Acids

, Volume 48, Issue 7, pp 1677–1684 | Cite as

Identification and bioactivity evaluation of the first neuropeptide from the lesser-known insect order Embioptera (webspinner)

  • Gerd GädeEmail author
  • Petr Šimek
  • Heather G. Marco
Original Article

Abstract

A species of the poorly studied order Embioptera, the webspinner Oligotoma saundersii, is investigated for its complement of neuropeptides of the adipokinetic hormone (AKH) family. A methanolic extract of its corpora cardiaca (CC) is able to effect carbohydrate mobilization in the cockroach, Periplaneta americana, and liquid chromatography coupled to electrospray ionization mass spectrometry clearly identified one decapeptide as a member of the AKH family in the CC of O. saundersii. The primary structure of this peptide, code-named Olisa-AKH, is elucidated as pEVNFSPNWGG amide. It is a novel member of the AKH family and in its synthetic form it has strong hypertrehalosemic activity in the American cockroach. This effect may be explained by its near-identical structure compared with one of the endogenous cockroach AKH peptides. An analog with the reversed order of the proline and asparagine residues, viz. N6P7-Olisa-AKH, had negligible activity thus, shedding light on the requirements of the cockroach AKH receptor. From reversed-phase high-performance liquid chromatography experiments, we can conclude that the CC from an individual webspinner contains less than one pmol of Olisa-AKH. Comparison of the AKH sequences from the major orders of the Polyneoptera does not point to a close phylogenetic relationship between webspinners and stick insects.

Keywords

Insect Webspinner Embioptera Adipokinetic peptide Mass spectrometry Metabolic bioassay 

Notes

Acknowledgments

Financial support of the present investigation was partially provided from grants of the National Research Foundation (Pretoria, South Africa; grant no. 85768 [IFR13020116790] to GG and IFR2011033100049 to HGM), by staff awards from the Research Council of the University of Cape Town (to GG and HGM) and the Czech Science Foundation (No. 13-18509S) to PS. We also acknowledge the assistance of DI. Pavla Kruzberska and Dr Martin Moos (Ceske Budejovice) for performing LC–MS and LC-HRMS analyses and Ms. Alukhanyo Xonti (Cape Town) for helping with bioassays.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

726_2016_2229_MOESM1_ESM.docx (461 kb)
Supplementary material 1 (DOCX 460 kb)
726_2016_2229_MOESM2_ESM.docx (43 kb)
Supplementary material 2 (DOCX 43 kb)

References

  1. Beutel RG, Wipfler B, Gottardo M et al (2013) Polyneoptera or “lower Neoptera”—new lights on old and difficult phylogenetic problems. Atti Accad Naz Italiana di Entomologia Anno LXI:133–142Google Scholar
  2. Büsse S, Hörnschemeyer T, Hohu K et al (2015) The spinning apparatus of webspinners—functional-morphology, morphometrics and spinning behaviour. Sci Rep 5:9986Google Scholar
  3. Candy DJ (2002) Adipokinetic hormone concentrations in the haemolymph of Schistocerca gregaria, measured by radioimmunoassay. Insect Biochem Mol Biol 32:1361–1367CrossRefPubMedGoogle Scholar
  4. Collin MA, Camama E, Swanson BO et al (2009a) Comparison of Embiopteran silks reveals tensile and structural similarities across taxa. Biomacromol 10:2268–2274CrossRefGoogle Scholar
  5. Collin MA, Garb JE, Edgerly JS et al (2009b) Characterization of silk spun by the embiopteran, Antipaluria urichi. Insect Biochem Mol Biol 39:75–82CrossRefPubMedGoogle Scholar
  6. Gäde G (1980) Further characteristics of adipokinetic and hyperglycaemic factor(s) of stick insects. J Insect Physiol 26:351–360CrossRefGoogle Scholar
  7. Gäde G (1985) Isolation of the hypertrehalosaemic factors I and II from the corpus cardiacum of the Indian stick insect, Carausius morosus, by reversed-phase high performance liquid chromatography, and amino acid composition of factor II. Biol Chem Hoppe Seyler 366:195–199CrossRefPubMedGoogle Scholar
  8. Gäde G (1986) Relative hypertrehalosaemic activities of naturally occurring neuropeptides from the AKH/RPCH family. Z Naturforsch 41c:315–320Google Scholar
  9. Gäde G (1989) The hypertrehalosaemic peptides of cockroaches: a phylogenetic study. Gen Comp Endocrinol 75:287–300CrossRefPubMedGoogle Scholar
  10. Gäde G (2004) Regulation of intermediary metabolism and water balance of insects by neuropeptides. Ann Rev Entomol 49:93–113CrossRefGoogle Scholar
  11. Gäde G (2009) Peptides of the adipokinetic hormone/red pigment-concentrating hormone family. A new take on biodiversity. Ann NY Acad Sci 163:125–136CrossRefGoogle Scholar
  12. Gäde G, Auerswald L (2003) Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol 132:10–20CrossRefPubMedGoogle Scholar
  13. Gäde G, Kellner R (1992) Primary structures of the hypertrehalosaemic peptides from corpora cardiaca of the primitive cockroach Polyphaga aegyptiaca. Gen Comp Endocrinol 86:119–127CrossRefPubMedGoogle Scholar
  14. Gäde G, Marco HG (2005) The adipokinetic hormones of Odonata: a phylogenetic approach. J Insect Physiol 51:333–341CrossRefPubMedGoogle Scholar
  15. Gäde G, Marco HG (2012) The adipokinetic hormone (AKH) of one of the most basal orders of Pterygota: structure and function of Ephemeroptera AKH. J Insect Physiol 58:1390–1396CrossRefPubMedGoogle Scholar
  16. Gäde G, Marco HG (2015) The decapod red pigment-concentrating hormone (Panbo-RPCH) is the first identified neuropeptide of the order Plecoptera and is interpreted as homoplastic character state. Gen Comp Endocrinol 221:228–235CrossRefPubMedGoogle Scholar
  17. Gäde G, Goldsworthy GJ, Kegel G et al (1984) Single step purification of locust adipokinetic hormone-I and hormone-II by reversed-phase high-performance liquid-chromatography, and amino acid composition of the hormone-II. Hoppe Seylers Z Physiol Chem 365:393–398CrossRefPubMedGoogle Scholar
  18. Gäde G, Hoffmann KH, Spring JH (1997) Hormonal regulation in insects: facts, gaps, and future directions. Physiol Rev 77:963–1032PubMedGoogle Scholar
  19. Gäde G, Marco HG, Šimek P et al (2008) Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: a case study with beetles and moths. Peptides 29:1124–1139CrossRefPubMedGoogle Scholar
  20. Hansen KK, Hauser F, Cazzamali G et al (2006) Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana. Biochem Biophys Res Commun 343:638–643CrossRefPubMedGoogle Scholar
  21. Ishiwata K, Sasaki G, Ogawa J et al (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogen Evol 58:169–180CrossRefGoogle Scholar
  22. Jedlička P, Steinbauerová V, Šimek P et al (2012) Functional characterization of the adipokinetic hormone in the pea aphid, Acyrthosiphon pisum. Comp Biochem Physiol Part A 162:51–58CrossRefGoogle Scholar
  23. Klass K-D (2009) A critical review of current data and hypotheses on hexapod phylogeny. Proc Arthr Embryol Soc Jpn 43:3–22Google Scholar
  24. Kodrik D, Marco HG, Šimek P et al (2010) The adipokinetic hormones of Heteroptera: a comparative study. Physiol Entomol 35:117–127CrossRefGoogle Scholar
  25. Kodrík D, Socha R, Syrová Z (2003) Developmental and diel changes of adipokinetic hormone in CNS and haemolymph of the flightless wing-polymorphic bug, Pyrrhocoris apterus (L.). J Insect Physiol 49:53–61CrossRefPubMedGoogle Scholar
  26. Letsch HO, Simon S (2013) Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera). Syst Entomol 38:783–793CrossRefGoogle Scholar
  27. Lorenz MW, Kellner R, Volkl W et al (2001) A comparative study on hypertrehalosaemic hormones in the Hymenoptera: sequence determination, physiological actions and biological significance. J Insect Physiol 47:563–571CrossRefPubMedGoogle Scholar
  28. Malik A, Gäde G, Lange AB (2012) Sequencing and biological effects of an adipokinetic/hypertrehalosemic peptide in the stick insect, Baculum extradentatum. Peptides 34:51–56CrossRefPubMedGoogle Scholar
  29. Marco HG, Šimek P, Gäde G (2011) The first decapeptide adipokinetic hormone (AKH) in Heteroptera: a novel AKH from a South African saucerbug, Laccocoris spurcus Naucoridae, Laccocorinae). Peptides 32:454–460CrossRefPubMedGoogle Scholar
  30. Marco HG, Šimek P, Clark KD et al (2013) Novel adipokinetic hormones in the kissing bugs Rhodnius prolixus, Triatoma infestans, Dipetalogaster maxima and Panstrongylus megistus. Peptides 41:21–30CrossRefPubMedGoogle Scholar
  31. Marco HG, Šimek P, Gäde G (2014) Adipokinetic hormones of the two extant apterygotan insect orders, Archaeognatha and Zygentoma. J Insect Physiol 60:17–24CrossRefPubMedGoogle Scholar
  32. Miller K, Hayashi C, Whiting MF et al (2012) The phylogeny and classification of Embioptera (Insecta). Syst Entomol 37:550–570CrossRefGoogle Scholar
  33. Misof B, Liu S, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767CrossRefPubMedGoogle Scholar
  34. Mugumbate G, Jackson GE, van der Spoel D et al (2013) Anopheles gambiae AKH-I hormone free and bound structure—an NMR experiment. Peptides 41:94–100CrossRefPubMedGoogle Scholar
  35. Picker M, Griffiths C, Weaving A (2002) Field guide to insects of South Africa. Struik Publishers, Cape TownGoogle Scholar
  36. Predel R, Neupert S, Huetteroth W et al (2012) Peptidomic-based phylogeny and biogeography of Mantophasmatodea (Hexapoda). Syst Biol 61:609–629CrossRefPubMedGoogle Scholar
  37. Roth S, Fromm B, Gäde G et al (2009) A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case. BMC Evol Biol 9:50CrossRefPubMedPubMedCentralGoogle Scholar
  38. Szumik C, Edgerly JS, Hayashi CY (2008) Phylogeny of embiopterans (Insecta). Cladistics 24:993–1005CrossRefGoogle Scholar
  39. Veenstra JA, Rodriguez L, Weaver RJ (2012) Allatotropin, leucokinin and AKH in honey bees and other Hymenoptera. Peptides 35:122–130CrossRefPubMedGoogle Scholar
  40. Weaver RJ, Marco HG, Šimek P et al (2012) Adipokinetic hormones (AKHs) of sphingid Lepidoptera, including the identification of a second M. sexta AKH. Peptides 34:44–50CrossRefPubMedGoogle Scholar
  41. Wicher D, Agricola H, Sohler S et al (2006) Differential receptor activation by cockroach adipokinetic hormones produces differential effects on ion currents, neuronal activity, and locomotion. J Neurophysiol 95:2314–2325CrossRefPubMedGoogle Scholar
  42. Wu H-Y, Ji X-Y, Yu W-W et al (2014) Complete mitochondrial genome of the stonefly Cryptoperla stilifera Sivec (Plecoptera: Peltoperlidae) and the phylogeny of Polyneopteran insects. Gene 537:177–183CrossRefPubMedGoogle Scholar
  43. Yoshizawa K (2011) Monophyletic Polyneoptera recovered by wing base structure. Syst Entomol 36:377–394CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Cape TownRondeboschSouth Africa
  2. 2.Biology CentreThe Czech Academy of SciencesCeske BudejoviceCzech Republic

Personalised recommendations