Advertisement

Amino Acids

, Volume 48, Issue 7, pp 1619–1629 | Cite as

Decreased cysteine uptake by EAAC1 gene deletion exacerbates neuronal oxidative stress and neuronal death after traumatic brain injury

  • Bo Young Choi
  • In Yeol Kim
  • Jin Hee Kim
  • Bo Eun Lee
  • Song Hee Lee
  • A. Ra Kho
  • Hee Jae Jung
  • Min Sohn
  • Hong Ki Song
  • Sang Won SuhEmail author
Original Article

Abstract

Excitatory amino acid carrier type 1 (EAAC1), a high-affinity glutamate transporter, can expend energy to move glutamate into neurons. However, under normal physiological conditions, EAAC1 does not have a great effect on glutamate clearance but rather participates in the neuronal uptake of cysteine. This process is critical to maintaining neuronal antioxidant function by providing cysteine for glutathione synthesis. Previous study showed that mice lacking EAAC1 show increased neuronal oxidative stress following transient cerebral ischemia. In the present study, we sought to characterize the role of EAAC1 in neuronal resistance after traumatic brain injury (TBI). Young adult C57BL/6 wild-type or EAAC1 / mice were subjected to a controlled cortical impact model for TBI. Neuronal death after TBI showed more than double the number of degenerating neurons in the hippocampus in EAAC1 / mice compared with wild-type mice. Superoxide production, zinc translocation and microglia activation similarly showed a marked increase in the EAAC1 / mice. Pretreatment with N-acetyl cysteine (NAC) reduced TBI-induced neuronal death, superoxide production and zinc translocation. These findings indicate that cysteine uptake by EAAC1 is important for neuronal antioxidant function and survival following TBI. This study also suggests that administration of NAC has therapeutic potential in preventing TBI-induced neuronal death.

Keywords

EAAC1 Cysteine Zinc TBI Reactive oxygen species Microglia 

Notes

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2012R1A2A2A01046132) and by Hallym University Specialization Fund (HRF-S-52).

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

References

  1. Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9(1):119–126. doi: 10.1038/nn1609 CrossRefPubMedGoogle Scholar
  2. Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108(3):227–238. pii: JST.JSTAGE/jphs/08R01CRGoogle Scholar
  3. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25(3):335–358. pii: S0165017397000453Google Scholar
  4. Banbury-Conference (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19(4):755–759. pii: S0896-6273(00)80958-7Google Scholar
  5. Bullock R, Kuroda Y, Teasdale GM, McCulloch J (1992) Prevention of post-traumatic excitotoxic brain damage with NMDA antagonist drugs: a new strategy for the nineties. Acta Neurochir Suppl (Wien) 55:49–55Google Scholar
  6. Chen Y, Swanson RA (2003) The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 84(6):1332–1339. pii: 1630Google Scholar
  7. Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW (2012) Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res 1481:49–58. doi: 10.1016/j.brainres.2012.08.032 CrossRefPubMedGoogle Scholar
  8. Choi BY, Kim JH, Kim HJ, Lee BE, Kim IY, Sohn M, Suh SW (2014) EAAC1 gene deletion increases neuronal death and blood brain barrier disruption after transient cerebral ischemia in female mice. Int J Mol Sci 15(11):19444–19457. doi: 10.3390/ijms151119444 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM (1994) Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma 11(5):499–506CrossRefPubMedGoogle Scholar
  10. d’Avila JC, Lam TI, Bingham D, Shi J, Won SJ, Kauppinen TM, Massa S, Liu J, Swanson RA (2012) Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J Neuroinflamm 9:31. doi: 10.1186/1742-2094-9-31 CrossRefGoogle Scholar
  11. De Vries N, De Flora S (1993) N-acetyl-l-cysteine. J Cell Biochem Suppl 17F:270–277CrossRefPubMedGoogle Scholar
  12. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671. pii: S030100829900060XGoogle Scholar
  13. Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244(4906):798–800CrossRefPubMedGoogle Scholar
  14. Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20(2):91–103CrossRefPubMedGoogle Scholar
  15. Himi T, Ikeda M, Yasuhara T, Nishida M, Morita I (2003) Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons. J Neural Transm 110(12):1337–1348. doi: 10.1007/s00702-003-0049-z CrossRefPubMedGoogle Scholar
  16. Jang BG, Won SJ, Kim JH, Choi BY, Lee MW, Sohn M, Song HK, Suh SW (2012) EAAC1 gene deletion alters zinc homeostasis and enhances cortical neuronal injury after transient cerebral ischemia in mice. J Trace Elem Med Biol 26(2–3):85–88. doi: 10.1016/j.jtemb.2012.04.010 CrossRefPubMedGoogle Scholar
  17. Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471. doi: 10.1038/360467a0 CrossRefPubMedGoogle Scholar
  18. Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73(6):889–900. doi: 10.3171/jns.1990.73.6.0889 CrossRefPubMedGoogle Scholar
  19. Kauppinen TM, Swanson RA (2005) Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol 174(4):2288–2296. pii: 174/4/2288Google Scholar
  20. Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA (2008) Zinc triggers microglial activation. J Neurosci 28(22):5827–5835. doi: 10.1523/JNEUROSCI.1236-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2012) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. doi: 10.1371/journal.pbio.1000412 CrossRefGoogle Scholar
  22. Lane MC, Jackson JG, Krizman EN, Rothstein JD, Porter BE, Robinson MB (2014) Genetic deletion of the neuronal glutamate transporter, EAAC1, results in decreased neuronal death after pilocarpine-induced status epilepticus. Neurochem Int 73:152–158. doi: 10.1016/j.neuint.2013.11.013 CrossRefPubMedGoogle Scholar
  23. Lee SA, Choi JG, Zuo Z (2009) Volatile anesthetics attenuate oxidative stress-reduced activity of glutamate transporter type 3. Anesth Analg 109(5):1506–1510. doi: 10.1213/ANE.0b013e3181b6709a CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li L, Zuo Z (2011) Glutamate transporter type 3 knockout reduces brain tolerance to focal brain ischemia in mice. J Cereb Blood Flow Metab 31(5):1283–1292. doi: 10.1038/jcbfm.2010.222 CrossRefPubMedGoogle Scholar
  25. Mazor D, Golan E, Philip V, Katz M, Jafe A, Ben-Zvi Z, Meyerstein N (1996) Red blood cell permeability to thiol compounds following oxidative stress. Eur J Haematol 57(3):241–246CrossRefPubMedGoogle Scholar
  26. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, Chan PH (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18(1):205–213PubMedGoogle Scholar
  27. Peghini P, Janzen J, Stoffel W (1997) Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J 16(13):3822–3832. doi: 10.1093/emboj/16.13.3822 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383. doi: 10.1002/ana.22455 CrossRefPubMedGoogle Scholar
  29. Rao VL, Dogan A, Todd KG, Bowen KK, Kim BT, Rothstein JD, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J Neurosci 21(6):1876–1883. pii: 21/6/1876Google Scholar
  30. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686CrossRefPubMedGoogle Scholar
  31. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874(2):123–130. pii: S0006-8993(00)02513-0Google Scholar
  32. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267(16):4904–4911. pii: ejb1595Google Scholar
  33. Singh P (2003) Missile injuries of the brain: results of less aggressive surgery. Neurol India 51(2):215–219PubMedGoogle Scholar
  34. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266. doi: 10.1002/1098-1136(200103)33:3<256:AID-GLIA1024>3.0.CO;2-J CrossRefPubMedGoogle Scholar
  35. Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 852(2):268–273. pii: S0006899399020958Google Scholar
  36. Suh SW, Frederickson CJ, Danscher G (2006) Neurotoxic zinc translocation into hippocampal neurons is inhibited by hypothermia and is aggravated by hyperthermia after traumatic brain injury in rats. J Cereb Blood Flow Metab 26(2):161–169. doi: 10.1038/sj.jcbfm.9600176 CrossRefPubMedGoogle Scholar
  37. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117(4):910–918. doi: 10.1172/JCI30077 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Suh SW, Hamby AM, Gum ET, Shin BS, Won SJ, Sheline CT, Chan PH, Swanson RA (2008) Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death. J Cereb Blood Flow Metab 28(10):1697–1706. doi: 10.1038/jcbfm.2008.61 CrossRefPubMedGoogle Scholar
  39. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702CrossRefPubMedGoogle Scholar
  40. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42(4):318–343CrossRefPubMedGoogle Scholar
  41. van Landeghem FK, Stover JF, Bechmann I, Bruck W, Unterberg A, Buhrer C, von Deimling A (2001) Early expression of glutamate transporter proteins in ramified microglia after controlled cortical impact injury in the rat. Glia 35(3):167–179CrossRefPubMedGoogle Scholar
  42. Watabe M, Aoyama K, Nakaki T (2008) A dominant role of GTRAP3-18 in neuronal glutathione synthesis. J Neurosci 28(38):9404–9413. doi: 10.1523/JNEUROSCI.3351-08.2008 CrossRefPubMedGoogle Scholar
  43. Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10(3):976–988CrossRefPubMedGoogle Scholar
  44. Won SJ, Yoo BH, Brennan AM, Shin BS, Kauppinen TM, Berman AE, Swanson RA, Suh SW (2010) EAAC1 gene deletion alters zinc homeostasis and exacerbates neuronal injury after transient cerebral ischemia. J Neurosci 30(46):15409–15418. doi: 10.1523/JNEUROSCI.2084-10.2010 CrossRefPubMedGoogle Scholar
  45. Zerangue N, Kavanaugh MP (1996) Interaction of l-cysteine with a human excitatory amino acid transporter. J Physiol 493(Pt 2):419–423CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Bo Young Choi
    • 1
  • In Yeol Kim
    • 1
  • Jin Hee Kim
    • 1
  • Bo Eun Lee
    • 1
  • Song Hee Lee
    • 1
  • A. Ra Kho
    • 1
  • Hee Jae Jung
    • 1
  • Min Sohn
    • 3
  • Hong Ki Song
    • 2
  • Sang Won Suh
    • 1
    Email author
  1. 1.Department of PhysiologyHallym University, College of MedicineChuncheonKorea
  2. 2.Department of NeurologyHallym University, College of MedicineChuncheonKorea
  3. 3.Department of NursingInha UniversityIncheonKorea

Personalised recommendations