Skip to main content
Log in

Chemical tags for site-specific fluorescent labeling of biomolecules

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This review focuses on the various approaches to covalently attach a chromophore to a biomolecule of interest in site-specific manner. Novel methods like inverse electron-demand Diels–Alder reaction, Pictet-Spengler ligation and enzyme tags like SNAP and Halo-tags are critically discussed and compared to established techniques like copper-free click reaction and native chemical ligation. Selected examples in which the tags have been exploited for in vitro or in vivo imaging are reviewed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13

Similar content being viewed by others

References

  • Abo M, Minakami R, Miyano K, Kamiya M, Nagano T, Urano Y, Sumimoto H (2014) Visualization of phagosomal hydrogen peroxide production by a novel fluorescent probe that is localized via SNAP-tag labeling. Anal Chem 86(12):5983–5990

    Article  CAS  PubMed  Google Scholar 

  • Agard NJ, Prescher JA, Bertozzi CR (2004) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126(46):15046–15047

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, Jones LC, Rabuka D (2013a) Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconj Chem 24(6):846–851

    Article  CAS  Google Scholar 

  • Agarwal P, van der Weijden J, Sletten EM, Rabuka D, Bertozzi CR (2013b) A Pictet-Spengler ligation for protein chemical modification. Proc Natl Acad Sci USA 110(1):46–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ameta S, Becker J, Jaschke A (2014) RNA-peptide conjugate synthesis by inverse-electron demand Diels-Alder reaction. Org Biomol Chem 12(26):4701–4707

    Article  CAS  PubMed  Google Scholar 

  • Beatty KE, Szychowski J, Fisk JD, Tirrell DA (2011) A BODIPY-cyclooctyne for protein imaging in live cells. ChemBioChem 12(14):2137–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann HSG, Niederwieser A, Wiessler M, Wittmann V (2012) Preparation of carbohydrate arrays by using Diels-Alder reactions with inverse electron demand. Chem-Eur J 18(21):6548–6554

    Article  CAS  PubMed  Google Scholar 

  • Bellmann-Sickert K, Baumann L, Beck-Sickinger AG (2010) Selective labelling of stromal cell-derived factor 1 alpha with carboxyfluorescein to study receptor internalisation. J Pept Sci 16(10):568–574

    Article  CAS  PubMed  Google Scholar 

  • Blackman ML, Royzen M, Fox JM (2008) Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130(41):13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomquist AT, Liu LH (1953) Many-membered carbon rings. 7. Cyclooctyne. J Am Chem Soc 75(9):2153–2154

    Article  CAS  Google Scholar 

  • Brunel FM, Lewis JD, Destito G, Steinmetz NF, Manchester M, Stuhlmann H, Dawson PE (2010) Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett 10(3):1093–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR (2007) Imaging cell surface glycans with bioorthogonal chemical reporters. J Am Chem Soc 129(27):8400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA, Agard NJ, Lo A, Bertozzi CR (2010) Copper-free click chemistry in living animals. Proc Natl Acad Sci USA 107(5):1821–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WX, Wang DZ, Dai CF, Hamelberg D, Wang BH (2012) Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. Chem Commun 48(12):1736–1738

    Article  CAS  Google Scholar 

  • Cole NB, Donaldson JG (2012) Releasable SNAP-tag probes for studying endocytosis and recycling. ACS Chem Biol 7(3):464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotton GJ, Muir TW (1999) Peptide ligation and its application to protein engineering. Chem Biol 6(9):R247–R256

    Article  CAS  PubMed  Google Scholar 

  • Cotton GJ, Muir TW (2000) Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. Chem Biol 7(4):253–261

    Article  CAS  PubMed  Google Scholar 

  • Crich D, Banerjee A (2007) Native chemical ligation at phenylalanine. J Am Chem Soc 129(33):10064

    Article  CAS  PubMed  Google Scholar 

  • Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30(1):8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis L, Chin JW (2012) Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Bio 13(3):168–182

    CAS  Google Scholar 

  • Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  CAS  PubMed  Google Scholar 

  • Debets MF, Van Berkel SS, Dommerholt J, Dirks AJ, Rutjes FPJT, Van Delft FL (2011) Bioconjugation with strained alkenes and alkynes. Acc Chem Res 44(9):805–815

    Article  CAS  PubMed  Google Scholar 

  • Dehnert KW, Baskin JM, Laughlin ST, Beahm BJ, Naidu NN, Amacher SL, Bertozzi CR (2012) Imaging the sialome during zebrafish development with copper-free click chemistry. ChemBioChem 13(3):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deiters A, Cropp TA, Mukherji M, Chin JW, Anderson JC, Schultz PG (2003) Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J Am Chem Soc 125(39):11782–11783

    Article  CAS  PubMed  Google Scholar 

  • del Amo DS, Wang W, Jiang H, Besanceney C, Yan AC, Levy M, Liu Y, Marlow FL, Wu P (2010) Biocompatible copper(I) catalysts for in vivo imaging of glycans. J Am Chem Soc 132(47):16893–16899

    Article  PubMed Central  Google Scholar 

  • Demchenko AP (2011) Advanced fluorescence reporters in chemistry and biology III: applications in sensing and imaging. Springer Ser Fluores 10:1–352

    Google Scholar 

  • Devaraj NK, Weissleder R, Hilderbrand SA (2008) Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjugate Chem 19(12):2297–2299

    Article  CAS  Google Scholar 

  • Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R (2010) Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew Chem Int Edit 49(16):2869–2872

    Article  CAS  Google Scholar 

  • Dirksen A, Hackeng TM, Dawson PE (2006) Nucleophilic catalysis of oxime ligation. Angew Chem Int Edit 45(45):7581–7584

    Article  CAS  Google Scholar 

  • Dittmann M, Sadek M, Seidel R, Engelhard M (2012) Native chemical ligation in dimethylformamide can be performed chemoselectively without racemization. J Pept Sci 18(5):312–316

    Article  CAS  PubMed  Google Scholar 

  • Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, van Hest JCM, Lefeber DJ, Friedl P, van Delft FL (2010) Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem Int Edit 49(49):9422–9425

    Article  CAS  Google Scholar 

  • Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. Faseb J 25(1):66–77

    Article  CAS  PubMed  Google Scholar 

  • Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, de Hart GW, Garofalo AW, Holder P, Jones LC, Kudirka R, McFarland J, Zmolek W, Rabuka D (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconj Chem 25(7):1331–1341

    Article  CAS  Google Scholar 

  • Engelsma SB, Willems LI, van Paaschen CE, van Kasteren SI, van der Marel GA, Overkleeft HS, Filippov DV (2014) Acylazetine as a dienophile in bioorthogonal inverse electron-demand Diels-Alder ligation. Org Lett 16(10):2744–2747

    Article  CAS  PubMed  Google Scholar 

  • Erhart D, Zimmermann M, Jacques O, Wittwer MB, Ernst B, Constable E, Zvelebil M, Beaufils F, Wymann MP (2013) Chemical development of intracellular protein heterodimerizers. Chem Biol 20(4):549–557

    Article  CAS  PubMed  Google Scholar 

  • Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275(13):9091–9094

    Article  CAS  PubMed  Google Scholar 

  • Evans HL, Nguyen QD, Carroll LS, Kaliszczak M, Twyman FJ, Spivey AC, Aboagye EO (2014) A bioorthogonal Ga-labelling strategy for rapid in vivo imaging. Chem Commun 50(67):9557–9560

    Article  CAS  Google Scholar 

  • Gautier A, Juillerat A, Heinis C, Correa IR, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review—the fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  CAS  PubMed  Google Scholar 

  • Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  CAS  PubMed  Google Scholar 

  • Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotech 21(6):766–776

    Article  CAS  PubMed  Google Scholar 

  • Hofmann RM, Cotton GJ, Chang EJ, Vidal E, Veach D, Bornmann W, Muir TW (2001) Fluorescent monitoring of kinase activity in real time: development of a robust fluorescence-based assay for abi tyrosine kinase activity. Bioorg Med Chem Lett 11(24):3091–3094

    Article  CAS  PubMed  Google Scholar 

  • Hong V, Steinmetz NF, Manchester M, Finn MG (2010) Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconj Chem 21(10):1912–1916

    Article  CAS  Google Scholar 

  • Huber W, Perspicace S, Kohler J, Muller F, Schlatter D (2004) SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins. Anal Biochem 333(2):280–288

    Article  CAS  PubMed  Google Scholar 

  • Huisgen R (1963) Kinetik und mechanismus 1.3-dipolarer cycloadditionen. Angew Chem Int Edit 75(16-7):742

    Article  CAS  Google Scholar 

  • Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39(4):1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewett JC, Bertozzi CR (2011) Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org Lett 13(22):5937–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing CR, Cornish VW (2011) Chemical tags for labeling proteins inside living cells. Acc Chem Res 44(9):784–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Karver MR, Weissleder R, Hilderbrand SA (2011) Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconj Chem 22(11):2263–2270

    Article  CAS  Google Scholar 

  • Kele P, Li XH, Link M, Nagy K, Herner A, Lorincz K, Beni S, Wolfbeis OS (2009) Clickable fluorophores for biological labeling-with or without copper. Org Biomol Chem 7(17):3486–3490

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DC, McKay CS, Legault MCB, Danielson DC, Blake JA, Pegoraro AF, Stolow A, Mester Z, Pezacki JP (2011) Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J Am Chem Soc 133(44):17993–18001

    Article  CAS  PubMed  Google Scholar 

  • Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Axup JY, Dubrovska A, Kazane SA, Hutchins BA, Wold ED, Smider VV, Schultz PG (2012) Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J Am Chem Soc 134(24):9918–9921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King M, Wagner A (2014) Developments in the field of bioorthogonal bond forming reactions-past and present trends. Bioconj Chem 25(5):825–839

    Article  CAS  Google Scholar 

  • Kitov PI, Vinals DF, Ng S, Tjhung KF, Derda R (2014) Rapid, hydrolytically stable modification of aldehyde-terminated proteins and phage libraries. J Am Chem Soc 136(23):8149–8152

    Article  CAS  PubMed  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Edit 40(11):2004

    Article  CAS  Google Scholar 

  • Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW (2012) Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J Am Chem Soc 134(25):10317–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohane RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HatoTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Gong DQ, Bar-Sagi D, Cole PA (2001) Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol Cell 8(4):759–769

    Article  CAS  PubMed  Google Scholar 

  • Mbua NE, Guo J, Wolfert MA, Steet R, Boons GJ (2011) Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. ChemBioChem 12(12):1911–1920

    Article  Google Scholar 

  • Melnyk O, Fehrentz JA, Martinez J, Gras-Masse H (2000) Functionalization of peptides and proteins by aldehyde or keto groups. Biopolymers 55(2):165–186

    Article  CAS  PubMed  Google Scholar 

  • Mende F, Seitz O (2011) 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide alpha-thioesters. Angew Chem Int Edit 50(6):1232–1240

    Article  CAS  Google Scholar 

  • Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Article  CAS  PubMed  Google Scholar 

  • Neef AB, Schultz C (2009) Selective fluorescence labeling of lipids in living cells. Angew Chem Int Ed 48(8):1498–1500, S1498/1491–S1498/1425

  • Niederwieser A, Spate AK, Nguyen LD, Jungst C, Reutter W, Wittmann V (2013) Two-color glycan labeling of live cells by a combination of DielsAlder and click chemistry. Angew Chem Int Edit 52(15):4265–4268

    Article  CAS  Google Scholar 

  • O’Hare HM, Johnsson K, Gautier A (2007) Chemical probes shed light on protein function. Curr Opin Struc Biol 17(4):488–494

    Article  Google Scholar 

  • Peneva K, Gundlach K, Herrmann A, Paulsen H, Mullen K (2010) Site-specific incorporation of perylene into an N-terminally modified light-harvesting complex II. Org Biomol Chem 8(21):4823–4826

    Article  CAS  PubMed  Google Scholar 

  • Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem Int Edit 50(17):3878–3881

    Article  CAS  Google Scholar 

  • Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3(11):707–708

    Article  CAS  PubMed  Google Scholar 

  • Ramil CP, Lin Q (2013) Bioorthogonal chemistry: strategies and recent developments. Chem Commun 49(94):11007–11022

    Article  CAS  Google Scholar 

  • Rashidian M, Song JM, Pricer RE, Distefano MD (2012) Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. J Am Chem Soc 134(20):8455–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohde H, Seitz O (2010) Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides. Biopolymers 94(4):551–559

    Article  CAS  PubMed  Google Scholar 

  • Sateriale A, Roy NH, Huston CD (2013) SNAP-tag technology optimized for use in Entamoeba histolytica. Plos One 8(12):e83997

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoch J, Staudt M, Samanta A, Wiessler M, Jaschke A (2012) Site-specific one-pot dual labeling of DNA by orthogonal cycloaddition chemistry. Bioconj Chem 23(7):1382–1386

    Article  CAS  Google Scholar 

  • Seitchik JL, Peeler JC, Taylor MT, Blackman ML, Rhoads TW, Cooley RB, Refakis C, Fox JM, Mehl RA (2012) Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J Am Chem Soc 134(6):2898–2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman F, Stewart JW, Tsunasawa S (1985) Methionine or not methionine at the beginning of a protein. BioEssays 3(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Sletten EM, Bertozzi CR (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44(9):666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W, Wang Y, Qu J, Madden MM, Lin Q (2008) A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew Chem Int Edit 47(15):2832–2835

    Article  CAS  Google Scholar 

  • Southworth MW, Amaya K, Evans TC, Xu MQ, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the mycobacterium xenopi gyrase A intein. Biotechniques 27(1):110

    CAS  PubMed  Google Scholar 

  • Speers AE, Adam GC, Cravatt BF (2003) Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125(16):4686–4687

    Article  CAS  PubMed  Google Scholar 

  • Takaoka Y, Ojida A, Hamachi I (2013) Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew Chem Int Edit 52(15):4088–4106

    Article  CAS  Google Scholar 

  • Tirat A, Freuler F, Stettler T, Mayr LM, Leder L (2006) Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins. Int J Biol Macromol 39(1–3):66–76

    Article  CAS  PubMed  Google Scholar 

  • Tolbert TJ, Wong CH (2002) New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew Chem Int Edit 41(12):2171–2174

    Article  CAS  Google Scholar 

  • Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Bi 26:285–314

    Article  CAS  Google Scholar 

  • van Geel R, Pruijn GJM, van Delft FL, Boelens WC (2012) Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconj Chem 23(3):392–398

    Article  Google Scholar 

  • Wissner RF, Batjargal S, Fadzen CM, Petersson EJ (2013) Labeling proteins with fluorophore/thioamide forster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. J Am Chem Soc 135(17):6529–6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte MD, Kallemeijn WW, Aten J, Li KY, Strijland A, Donker-Koopman WE, van den Nieuwendijk AMCH, Bleijlevens B, Kramer G, Florea BI, Hooibrink B, Hollak CEM, Ottenhoff R, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG (2010) Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Nat Chem Biol 6(12):907–913

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci USA 96(2):388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Yang WY (2009) Site-specific two-color protein labeling for FRET studies using split inteins. J Am Chem Soc 131(33):11644

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liang Y, Seckute J, Houk KN, Devaraj NK (2014) Synthesis and reactivity comparisons of 1-methyl-3-substituted cyclopropene mini-tags for tetrazine bioorthogonal reactions. Chem-Eur J 20(12):3365–3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi L, Sun H, Itzen A, Triola G, Waldmann H, Goody RS, Wu YW (2011) One-pot dual-labeling of a protein by two chemoselective reactions. Angew Chem Int Edit 50(36):8287–8290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalina Peneva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Animals rights and human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freidel, C., Kaloyanova, S. & Peneva, K. Chemical tags for site-specific fluorescent labeling of biomolecules. Amino Acids 48, 1357–1372 (2016). https://doi.org/10.1007/s00726-016-2204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2204-5

Keywords

Navigation