Skip to main content
Log in

Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Several naturally occurring amino acid derivatives display significant activities against weeds, fungi and insects: some of them have been even commercialized and are applied as crop protection agents. The 53 most important amino acid natural products with such efficacy are presented in this review together with their natural source, mode of action and biological activity. The diversity of the manifold bacterial, fungal and plantal sources of these compounds is impressive as well as their completely different structural scaffolds, ranging from cyclopeptides via unique non-proteinogenic amino acids to peptidyl nucleosides, the broad range of target enzymes from several different biochemical pathways, which they inhibit and also the plethora of different weeds, fungi and insects they are able to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bassarello C, Bifulco G, Evidente A, Riccio R, Gomez-Paloma L (2001) Stereochemical studies on ascaulitoxin: a J-based NMR configurational analysis of a nitrogen substituted system. Tetrahedron Lett 42:8611–8613

    Article  CAS  Google Scholar 

  • Beaudegnies R, Edmunds AJF, Fraser TEM, Hall RG, Hawkes TR, Mitchell G, Schaetzer J, Wendeborn S, Wibley J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorg Med Chem 17:4134–4152

    Article  CAS  PubMed  Google Scholar 

  • Beautement K, Chrystal EJT, Howard J, Ridley SM (2000) N-(α-aminoacyl)-5′-O-sulfamoyladenosines: natural product based inhibitors of amino acyl tRNA synthetases. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity—new leads for the pharmaceutical and agrochemical industry. Royal Society of Chemistry, London, pp 288–294

    Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae pytotoxins: mode of action, regulation and biosynthesis by peptide and polyketide synthetases. Micobiol Mol Biol Rev 63:266–292

    CAS  Google Scholar 

  • Block A, Schmelz E, Jones JB, Klee HJ (2005) Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohormone control. Mol Plant Pathol 6:79–83

    Article  CAS  PubMed  Google Scholar 

  • Brunner H-G, Chemla P, Dobler MR, O’Sullivan AC, Pachlatko P, Pillonel C, Stierli D (2007) Fungicidal properties of acivicin and its derivatives. In: Lyga JW, Theodoridis G (eds) Synthesis and chemistry of agrochemicals VII, ACS symposium series 948. American Chemical Society, Washington, pp 121–135

    Chapter  Google Scholar 

  • Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Copping L, Duke SO (2007) Natural products that have been used commercially as crop protection agents, a review. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  • Crombie L (1999) Natural product chemistry and its part in the defense against insects and fungi in agriculture. Pestic Sci 55:761–774

    Article  CAS  Google Scholar 

  • Crowley PJ, Godfrey CRA, Viner R (2007) The crocacins A and D: novel natural products as leads for agrochemicals. In: Lyga JW, Theodoridis G (eds) Synthesis and chemistry of agrochemicals VII, ACS Symposium Series 948. American Chemical Society, Washington, pp 93–103

    Chapter  Google Scholar 

  • Crowley PJ, Berry EA, Cromartie T, Daldal F, Godfrey CRA, Lee D-W, Phillips JE, Taylor A, Viner R (2008) The role of molecular modeling in the design of analogues of the fungicidal products crocacins A and D. Bioorg Med Chem 16:10345–10355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan FE, Duke SO (2014) Natural compounds as next generation herbicides. Plant Physiol 166:1090–1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  CAS  PubMed  Google Scholar 

  • Dellweg H, Kurz J, Pflüger W, Schedel M, Vobis G, Wünsche C (1988) Rodaplutin, a new peptidylnucleoside from Nocardioides albus. J Antibiot 41:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Dayan FE (2011) Modes of action of microbially-produced phytotoxins. Toxins 3:1038–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldefrawi ME, Anis NA, Eldefrawi AT (1993) Glutamate receptor inhibitors as potential insecticides. Arch Insect Biochem Physiol 22:25–39

    Article  CAS  PubMed  Google Scholar 

  • Everett NP (1994) Design of antifungal peptides for agricultural applications. “Natural and engineered pest management agents” ACS symposium series, vol 551. American Chemical Society, Washington, pp 278–291

    Chapter  Google Scholar 

  • Faruck MO, Yusof F, Chowdhury S (2016) An overview of antifungal peptides derived from insect. Peptides 76 [Epub ahead of print]

  • Fushimi S, Nishikawa S, Mito N, Ikemoto M, Sasaki M, Seto H (1989) Studies on a new herbicidal antibiotic homoalanosine. J Antibiot 42:1370–1378

    Article  CAS  PubMed  Google Scholar 

  • Gerwick BC, Fields SS, Graupner PR, Gray JA, Chapin EL, Cleveland JA, Heim DR (1997) Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction. Weed Sci 45:654–657

    CAS  Google Scholar 

  • Hoagland RE (2001) Bioherbicides: phytotoxic natural products. In: Baker DR, Umetsu NK (eds) Agrochemical discovery, ACS Symposium Series, vol 774. American Chemical Society, Washington, pp 72–90

    Chapter  Google Scholar 

  • Hou C-X, William M (2006) Actinonin-induced inhibition of plant peptide formylase: a paradigm for the design of novel broad-spectrum herbicides. In: Rimando AM, Duke SO (eds) Natural products for pest management, ACS Symposium Series, vol 927. American Chemical Society, Washington, pp 243–254

    Chapter  Google Scholar 

  • Irvine NM, Yerkes CN, Graupner PR, Roberts RE, Hahn DR, Pearce C, Gerwick BC (2008) Synthesis and characterization of synthetic analogs of cinnacidin, a novel phytotoxin from Nectria sp. Pest Manag Sci 64:891–899

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Suzuki S (1979) The polyoxins: pyrimidine nucleoside peptide antibiotics inhibiting fungal cell wall biosynthesis. Heterocycles 13:333–351

    Article  CAS  Google Scholar 

  • Kida T, Shibai H (1985) Inhibition by hadacidin, duazomycin A and other amino acid derivatives of de novo starch synthesis. Agric Biol Chem 49:3231–3237

    Article  CAS  Google Scholar 

  • Lamberth C (2005) Nucleoside chemistry in crop protection. Heterocycles 65:667–695

    Article  CAS  Google Scholar 

  • Lamberth C (2010) Amino acid chemistry in crop protection. Tetrahedron 66:7239–7256

    Article  CAS  Google Scholar 

  • Lax AR, Shepherd HS, Edwards JV (1988) Tentoxin, a chlorosis-inducing toxin from Alternaria as a potential herbicide. Weed Technol 2:540–544

    CAS  Google Scholar 

  • Lee DW, Kim BS (2015) Antimicrobial cyclic peptides for plant disease control. Plant Pathol J 31:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Lydon J, Duke SO (1999) Inhibitors of glutamine biosynthesis. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 445–464

    Google Scholar 

  • Maeda M, Komada T, Saito M, Tanaka T, Yoshizumi H, Nomoto K, Fujita T (1987) Neuromuscular action of insecticidal domoic acid on the American cockroach. Pestic Biochem Physiol 28:85–92

    Article  CAS  Google Scholar 

  • Murao S, Hayashi H (1983) Gougerotin as a plant growth inhibitor from Streptomyces sp. No. 179. Agric Biol Chem 47:1135–1136

    Article  CAS  Google Scholar 

  • Myokei R, Sakurai A, Chang C-F, Kodaira Y, Takahashi N, Tamura S (1969) Aspochracin, a new insecticidal metabolite of Aspergillus ochraceus. Agric Biol Chem 33:1491–1500

    Article  CAS  Google Scholar 

  • Ohba K, Nakayama H, Furihata K, Shimazu A, Endo T, Seto H, Otake N (1987) Nitropeptin, a new dipeptide antibiotic possessing a nitro group. J Antibiot 40:709–713

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Katagiri M, Awaya J, Atsumi K, Oiwa R, Hata T, Higashikawa S, Yasui K, Terada H, Kuyama S (1973) Production and isolation of a new antifungal antibiotic, prumycin and taxonomic studies of Streptomyces sp., strain No. F-1028. Agric Biol Chem 37:2805–2812

    Article  CAS  Google Scholar 

  • Ondeyka JG, Dombrowski AW, Polishook JP, Felcetto T, Shoop WL, Guan Z, Singh SB (2003) Isolation and insecticidal activity of mellamide from Aspergillus melleus. J Industr Microbiol Biotechnol 30:220–224

    Article  CAS  Google Scholar 

  • Owen WJ, Adelfinskaya Y, Benko Z, Schobert CT (2007) Factors involved in the field translation of a class of mitochondrial Qi inhibitor fungicides. In: Lyga JW, Theodoridis G (eds) Synthesis and chemistry of agrochemicals VII, ACS Symposium Series 948. American Chemical Society, Washington, pp 137–152

    Chapter  Google Scholar 

  • Owens LD (1973) Herbicidal potential of rhizobitoxine. Weed Sci 21:63–66

    CAS  Google Scholar 

  • Pachlatko JP (1998) Natural products in crop protection. Chimia 52:29–47

    CAS  Google Scholar 

  • Sauter H, Steglich W, Anke T (1999) Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed 38:1328–1349

    Article  Google Scholar 

  • Sree KS, Padmaja V, Murthy YLN (2008) Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae against Spodoptera litura larval stages. Pest Manag Sci 64:119–125

    Article  CAS  Google Scholar 

  • Stonard RJ, Ayer S, Kotyk JJ, Letendre LJ, McGary CI, Nickson TE, Le-Van N, Lavrik P (1994) Microbial secondary metabolites as a source of agrochemicals. In: Hedin PA, Menn JJ, Hollingworth RM (eds) Natural and engineered pest management agents, ACS Symposium Series, vol 551. American Chemical Society, Washington, pp 25–36

    Chapter  Google Scholar 

  • Sugawara F, Ishimoto M, Le-Van N, Koshino H, Uzawa J, Yoshida S, Kitamura K (1996) Insecticidal peptide from mungbean: a resistant factor against infestation with azuki bean weevil. J Agric Food Chem 44:3360–3364

    Article  CAS  Google Scholar 

  • Unruh JB, Christians NE, Horner HT (1997) Herbicidal effects of the dipeptide alaninyl-alanine on perennial rhygrass (Lolium perenne) seedlings. Crop Sci 37:208–212

    Article  CAS  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570

    Article  PubMed  Google Scholar 

  • Wicklow DT, Dowd PF, Alfatafta AA, Gloer JB (1996) Ochratoxin A: an antiinsectan metabolite from the sclerotia of Aspergillus carbonarius NRRL 369. Can J Microbiol 42:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Williams RD, Hoagland RE (2007) Phytotoxicity of mimosine and albizziine on seed germination and seedling growth of crops and weeds. Allelo J 19:423–430

    Google Scholar 

  • Xuan TD, Elzaawely AA, Deba F, Fukuta M, Tawata S (2006) Mimosine in leucaena as a potent bio-herbicide. Agron Sustain Dev 26:89–97

    Article  CAS  Google Scholar 

  • Yamaguchi I (1998) Natural product derived fungicides as exemplified by the antibiotics. In: Hutson D, Miyamoto J (eds) Fungicidal activity. Wiley, Chichester, pp 57–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Lamberth.

Ethics declarations

Conflict of interest

The author declares that he has no competing financial interests.

Ethical standard

This article does not contain any studies with human participants or animals (except insects) performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamberth, C. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity. Amino Acids 48, 929–940 (2016). https://doi.org/10.1007/s00726-016-2176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2176-5

Keywords

Navigation