Skip to main content

Advertisement

Log in

Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Creatine is of paramount importance for maintaining and managing cellular ATP stores in both physiological and pathological states. Besides these “ergogenic” actions, it has a number of additional “pleiotropic” effects, e.g., antioxidant activity, neurotransmitter-like behavior, prevention of opening of mitochondrial permeability pore and others. Creatine supplementation has been proposed for a number of conditions, including neurodegenerative diseases. However, it is likely that creatine’s largest therapeutic potential is in those diseases caused by energy shortage or by increased energy demand; for example, ischemic stroke and other cerebrovascular diseases. Surprisingly, despite a large preclinical body of evidence, little or no clinical research has been carried out in these fields. However, recent work showed that high-dose creatine supplementation causes an 8–9 % increase in cerebral creatine content, and that this is capable of improving, in humans, neuropsychological performances that are hampered by hypoxia. In addition, animal work suggests that creatine supplementation may be protective in stroke by increasing not only the neuronal but also the endothelial creatine content. Creatine should be administered before brain ischemia occurs, and thus should be given for prevention purposes to patients at high risk of stroke. In myocardial ischemia, phosphocreatine has been used clinically with positive results, e.g., showing prevention of arrhythmia and improvement in cardiac parameters. Nevertheless, large clinical trials are needed to confirm these results in the context of modern reperfusion interventions. So far, the most compelling evidence for creatine and/or phosphocreatine use in cardiology is as an addition to cardioplegic solutions, where positive effects have been repeatedly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adcock KH, Nedelcu J, Loenneker T, Martin E, Wallimann T, Wagner BP (2002) Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci 24(5):382–388

    Article  CAS  PubMed  Google Scholar 

  • Adriano E, Garbati P, Damonte G, Sali A, Armirotti A, Balestrino M (2011) Searching for a therapy of creatine transporter deficiency: some effects of creatine ethyl ester in brain slices in vitro. Neuroscience 29(199):386–393. doi:10.1016/j.neuroscience.2011.09.018

    Article  Google Scholar 

  • Allah Yar R, Akbar A, Iqbal F (2015) Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res 21(1595):92–100

    Article  Google Scholar 

  • Allen PJ, DeBold JF, Rios M, Kanarek RB (2015) Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats. Pharmacol Biochem Behav 130:22–33

    Article  CAS  PubMed  Google Scholar 

  • Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse 60(2):118–123

    Article  CAS  PubMed  Google Scholar 

  • Andres RH, Ducray AD, Huber AW, Pérez-Bouza A, Krebs SH, Schlattner U, Seiler RW, Wallimann T, Widmer HR (2005) Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 95(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343

    Article  CAS  PubMed  Google Scholar 

  • Artru AA, Michenfelder JD (1982) Cyclocreatine phosphate, an analogue of creatine phosphate, does not improve hypoxic tolerance in mice. J Neurochem 39(4):1198–1200

    Article  CAS  PubMed  Google Scholar 

  • Balestrino M (1995) Pathophysiology of anoxic depolarization: new findings and a working hypothesis. J Neurosci Methods 59:99–103

    Article  CAS  PubMed  Google Scholar 

  • Balestrino M, Somjen GG (1986) Chlorpromazine protects brain tissue in hypoxia by delaying spreading depression-mediated calcium influx. Brain Res 385(2):219–226

    Article  CAS  PubMed  Google Scholar 

  • Balestrino M, Rebaudo R, Lunardi G (1999) Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 816:124–130

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40(5):1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Branovets J, Sepp M, Kotlyarova S, Jepihhina N, Sokolova N, Aksentijevic D et al (2013) Unchanged mitochondrial organization and compartmentation of highenergy phosphates in creatine-deficient GAMT−/− mouse heart. Am J Physiol Heart Circ Physiol 305(4):H506–H520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter AJ, Müller RE, Pschorn U, Stransky W (1995) Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem 64(6):2691–2699

    Article  CAS  PubMed  Google Scholar 

  • Chambers DJ, Haire K, Morley N, Fairbanks L, Strumia E, Young CP, Venn GE (1996) St. Thomas’ hospital cardioplegia: Enhanced protection with exogenous creatine phosphate. Ann Thorac Surg 61:67–75

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Beal MF (2013) Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol Cell Neurosci 55:101–114

    Article  CAS  PubMed  Google Scholar 

  • Choonara YE, Pillay V, du Toit LC, Modi G, Naidoo D, Ndesendo VM, Sibambo SR (2009) Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 10(6):2510–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coraggio F, Spina M, Scarpato P (1987) Analysis of creatine phosphate on the evolution of ischemic lesion in acute myocardial infarction. Farmaci Terapia 4:91–93

    Google Scholar 

  • Cossolini M, Sonzogni V, Di Dedda G et al (1993) D’Alessandro LC, ed. Heart Surgery. Paediatric cold heart surgery: experience with creatine phosphate added to cardioplegic solution. Roma: Casa Editrice Scientifica Internazionale, pp 442–443

  • Cozzolino M, Ferri A, Valle C, Carrì MT (2013) Mitochondria and ALS: implications from novel genes and pathways. Mol Cell Neurosci 55:44–49

    Article  CAS  PubMed  Google Scholar 

  • Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt. 2):R698–R704

    CAS  PubMed  Google Scholar 

  • Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M (2007) Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am J Physiol Cell Physiol 293(4):C1263–C1271

    Article  CAS  PubMed  Google Scholar 

  • Deminice R, Portari GV, Vannucchi H, Jordao AA (2009) Effects of creatine supplementation on homocysteine levels and lipid peroxidation in rats. Br J Nutr 102:110–116

    Article  CAS  PubMed  Google Scholar 

  • Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DW (2014) Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth 27(14):150

    Article  Google Scholar 

  • Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766

    Article  CAS  PubMed  Google Scholar 

  • Ducray AD, Schläppi JA, Qualls R, Andres RH, Seiler RW, Schlattner U, Wallimann T, Widmer HR (2007) Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord. J Neurosci Res 85(9):1863–1875

    Article  CAS  PubMed  Google Scholar 

  • Engl E, Garvert MM A (2015) Prophylactic role for creatine in hypoxia? J Neurosci 24;35(25):9249–51

  • Enrico A, Patrizia G, Luisa P, Alessandro P, Gianluigi L, Carlo G, Maurizio B (2013) Electrophysiology and biochemical analysis of cyclocreatine uptake and effect in hippocampal slices. J Integr Neurosci 12(2):285–297

    Article  PubMed  Google Scholar 

  • Fagbemi O, Kane KA, Parratt JR (1982) Creatine phosphate suppresses ventricular arrhythmias resulting from coronary artery ligation. J Cardiovasc Pharmacol 4:53–58

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci 20(12):4389–97. PubMed PMID: 10844007

  • Genius J, Geiger J, Bender A, Möller HJ, Klopstock T, Rujescu D (2012) Creatine protects against excitoxicity in an in vitro model of neurodegeneration. PLoS One 7(2):e30554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo-han C, Jian-hua G, Xuan H, Jinyi W, Rong L, Zhong-min L (2013) Role of creatine phosphate as a myoprotective agent during coronary artery bypass graft in elderly patients. Coron Artery Dis 24(1):48–53

    Article  PubMed  Google Scholar 

  • Hall M, Trojian TH (2013) Creatine supplementation. Curr Sports Med Rep 12(4):240–244

    Article  PubMed  Google Scholar 

  • Hearse DJ, Tanaka K, Crome R, Manning AS (1986) Creatine phosphate and protection against reperfusion-induced arrhythmias in the rat heart. Eur J Pharmacol 131:21–30

    Article  CAS  PubMed  Google Scholar 

  • Horjus DL, Oudman I, van Montfrans GA, Brewster LM (2011) Creatine and creatine analogues in hypertension and cardiovascular disease. Cochrane Database Syst Rev 9:11

  • Horn M, Frantz S, Remkes H et al (1998) Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney. J Mol Cell Cardiol 30:277–284

    Article  CAS  PubMed  Google Scholar 

  • Horn M, Remkes H, Strömer H, Dienesch C, Neubauer S (2001) Chronic phosphocreatine depletion by the creatine analogue beta-guanidinopropionate is associated with increased mortality and loss of ATP in rats after myocardial infarction. Circulation 104(15):1844–1849

    Article  CAS  PubMed  Google Scholar 

  • Hove M, Lygate CA, Fischer A, Schneider JE, Sang AE, Hulbert K et al (2005) Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetateN-methyltransferase-knockout mice. Circulation 111(19):2477–2485

    Article  PubMed  Google Scholar 

  • Ingwall JS (1993) Is cardiac failure a consequence of decreased energy reserve? Circulation 87:58–62

    Google Scholar 

  • Iosseliani DG, Koledinsky AG, Kuchkina NV (2004) Does intracoronary injection of phosphocreatine prevent myocardial reperfusion injury following angioplasty of infarct-related artery in acute-stage of myocardial infarction? J Intervent Cardiol 6:10–14

    Google Scholar 

  • Iosseliani DG, Koledinsky AG, Kuchkina NV (2006) The possibility to limit reperfusion injury of cardiomyocytes using intracoronary cytoprotectors during endovascular reperfusion of the infarct-related artery. J Intervent Cardiol 11:10–16

    Google Scholar 

  • Iqbal S, Nazir N, Gillani Q, Akbar A, Iqbal F (2013) Effect of creatine monohydrate supplementation on various hematological and serum biochemical parameters of male albino mice following neonatal hypoxia-ischemia encephalopathy. Sci World J 19(2013):286075

    Google Scholar 

  • Jacobstein MD, Gerken TA, Bhat AM, Carlier PG (1989) Myocardial protection during ischemia by prior feeding with the creatine analog: Cyclocreatine. J Am Coll Cardiol 14:246–251

    Article  CAS  PubMed  Google Scholar 

  • Kaminogo M, Suyama K, Ichikura A, Onizuka M, Shibata S (1998) Anoxic depolarization determines ischemic brain injury. Neurol Res 20(4):343–348

    Article  CAS  PubMed  Google Scholar 

  • Kieburtz K, Tilley BC, Elm JJ, Babcock D, Hauser R, Ross GW, Augustine AH, Augustine EU, Aminoff MJ, Bodis-Wollner IG, Boyd J, Cambi F, ChouK Christine CW, Cines M, Dahodwala N, Derwent L, Dewey RB Jr, Hawthorne K, Houghton DJ, Kamp C, Leehey M, Lew MF, Liang GS, Luo ST, Mari Z, Morgan JC, Parashos S, Pérez A, Petrovitch H, Rajan S, Reichwein S, Roth JT, Schneider JS, Shannon KM, Simon DK, Simuni T, Singer C, Sudarsky L, Tanner CM, Umeh CC, Williams K, Wills AM (2015) Writing Group for the NINDS Exploratory Trials in Parkinson Disease (NET-PD) Effect of creatine monohydrate on clinical progression in patients with Parkinson disease: a randomized clinical trial. JAMA 313(6):584–593

    Article  PubMed  Google Scholar 

  • Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, Mueller G, Wermer M, Kaddurah-Daouk R, Beal MF (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5(3):347–350

    Article  CAS  PubMed  Google Scholar 

  • Korzhevskii DE, Otellin VA, Grigor’ev IP, Kostkin VB, Polenov SA, Lentsman MV, Balestrino M (2005) Structural organization of astrocytes in the rat hippocampus in the post-ischemic period. Neurosci Behav Physiol 35(4):389–392

    Article  CAS  PubMed  Google Scholar 

  • Kratirova NV, Veselkina OS, Kolpakova ME, Chefu SG, Korzhevskiĭ DE, Daĭneko AS, Prosvirina MS, Piskun AV, Vlasov TD (2012) Effect of intragastric creatine glycine ethylic ether fumarate administration in a rat model of occlusive ischemia. Ross Fiziol Zh Im I M Sechenova. 98(10):1258–1263

    CAS  PubMed  Google Scholar 

  • Krivanek J, Bures J, Buresova O (1958) Evidence for a relation between creatine phosphate level and polarity of the cerebral cortex. Nature 182(4652):1799

    Article  CAS  PubMed  Google Scholar 

  • Kubler W, Katz AM (1977) Mechanism of early ‘‘pump’’ failure of the ischemic heart: Possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am J Cardiol 40:467–471

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa Y, Degrauw TJ, Lindquist DM, Blanco VM, Pyne-Geithman GJ, Daikoku T, Chambers JB, Benoit SC, Clark JF (2012) Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest. 122(8):2837–2846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31(1):17–35

    Article  PubMed  Google Scholar 

  • Lensman M, Korzhevskii DE, Mourovets VO, Kostkin VB, Izvarina N, Perasso L, Gandolfo C, Otellin VA, Polenov SA, Balestrino M (2006) Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114(1):187–194

    Article  CAS  PubMed  Google Scholar 

  • Lipton P, Whittingham (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. TSJ Physiol 325:51–65

  • Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC (1988) Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci USA 85:807–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunardi G, Parodi A, Perasso L, Pohvozcheva AV, Scarrone S, Adriano E, Florio T, Gandolfo C, Cupello A, Burov SV, Balestrino M (2006) The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds. Neuroscience 142(4):991–997

    Article  CAS  PubMed  Google Scholar 

  • Lygate CA, Bohl S, ten Hove M, Faller KM, Ostrowski PJ, Zervou S, Medway DJ, Aksentijevic D, Sebag-Montefiore L, Wallis J, Clarke K, Watkins H, Schneider JE, Neubauer S (2012) Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res 96:466–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lygate CA, Aksentijevic D, Dawson D, ten Hove M, Phillips D, de Bono JP, Medway DJ, Sebag-Montefiore L, Hunyor I, Channon KM, Clarke K, Zervou S, Watkins H, Balaban RS, Neubauer S (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112(6):945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J, Cohen BM, Renshaw PF (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res 123(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Marshall RJ, Parratt JR (1974) Reduction in ventricular arrhythmias following acute coronary artery ligation in the dog after the administration of creatine phosphate. Naunyn Schmiedeberg’s Arch Pharmacol 281:437–441

    Article  CAS  Google Scholar 

  • Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, Kaddurah-Daouk R, Beal MF (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157(1):142–149

    Article  CAS  PubMed  Google Scholar 

  • McMorris T, Harris RC, Swain J, Corbett J, Collard K, Dyson RJ, Dye L, Hodgson C, Draper N (2006) Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology 185:93–103

    Article  CAS  PubMed  Google Scholar 

  • McMorris T, Harris RC, Howard AN, Langridge G, Hall B, Corbett J, Dicks M, Hodgson C (2007) Creatine supplementation, sleep deprivation, cortisol, melatonin and behaviour. Physiol Behav 90:21–28

    Article  CAS  PubMed  Google Scholar 

  • Neubauer S (1999) High-energy phosphate metabolism in normal, hypertrophied, and failing myocardium. Heart Failure Rev 4:269–280

    Article  CAS  Google Scholar 

  • Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151

    Article  PubMed  Google Scholar 

  • Neubauer S, H K. (1999) Functional and energetic consequences of chronic myocardial creatine depletion by b-guanidinopropionate in perfused hearts and in intact rats. J Mol Cell Cardiol 31:1845–1855

  • Neubauer S, Horn M, Cramer M et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  CAS  PubMed  Google Scholar 

  • Neubauer S, Remkes H, Spindler M, Horn M, Wiesmann F, Prestle J et al (1999) Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100(18):1847–1850

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T (1997) The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414(2):253–257

    Article  PubMed  Google Scholar 

  • Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, Terasaki T (2002) The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22(11):1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Osbakken M, Ito K, Zhang D, Ponomarenko I, Ivanics T, Jahngen EG, Cohn M (1992) Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart. Cardiology 80:184–195

  • Otellin VA, Korzhevskii DE, Kostkin VB, Balestrino M, Lensman MV, Polenov SA (2003) The neuroprotective effect of creatine in rats with cerebral ischemia. Dokl Biol Sci. May-Jun 390:197

    Article  CAS  Google Scholar 

  • Panchenko E, Dobrovolsky A, Rogoza A, Sorokin E, Ageeva N, Markova L, Titaeva E, Anuchin V, Karpov Y, Saks V (1994) The effect of exogenous phosphocreatine on maximal walking distance, blood rheology, platelet aggregation, and fibrinolysis in patients with intermittent claudication. Int Angiol 13:59–64

    CAS  PubMed  Google Scholar 

  • Parratt JR, Marshall RJ (1974) The response of isolated cardiac muscle to acute anoxia: protective effect of adenosine triphosphate and creatine phosphate. J Pharm Pharmacol 26:427–433

    Article  CAS  PubMed  Google Scholar 

  • Pastoris O, Dossena M, Vercesi L, Bruseghini M, Pagnin A, Ceriana P (1991) Biochemical changes induced in the myocardial cell during cardioplegic arrest supplemented with creatine phosphate. J Cardiothorac Vasc Anesth 5:475–480

    Article  CAS  PubMed  Google Scholar 

  • Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42

    Article  CAS  PubMed  Google Scholar 

  • Perasso L, Lunardi GL, Risso F, Pohvozcheva AV, Leko MV, Gandolfo C, Florio T, Cupello A, Burov SV, Balestrino M (2008) Protective effects of some creatine derivatives in brain tissue anoxia. Neurochem Res 33(5):765–775

    Article  CAS  PubMed  Google Scholar 

  • Perasso L, Adriano E, Ruggeri P, Burov SV, Gandolfo C, Balestrino M (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 18(1285):158–163

    Article  Google Scholar 

  • Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M (2013) Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev 33(2):336–363. doi:10.1002/med.20255

    Article  CAS  PubMed  Google Scholar 

  • Prass K, Royl G, Lindauer U, Freyer D, Megow D, Dirnagl U, Stöckler-Ipsiroglu G, Wallimann T, Priller J (2007) Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J Cereb Blood Flow Metab 27(3):452–459

    Article  CAS  PubMed  Google Scholar 

  • Preobrazhenskiĭ AN, Dzhavadov SA, Saks VA (1986) Possible mechanism of the protective effect of phosphocreatine on the ischemic myocardium. Biokhimiia 51(4):675–83 (article in Russian)

  • Raisaro A, Bargiggia CS, Bertucci C (1989) Clinical evaluation of phosphocreatine effect during acute myocardial infarction: A multicenter study: 139147. Proceedings of the International Meeting “Cardioprotection with phosphocreatine in cardiology and cardiac surgery” IRCCS, Policlinico S. Matteo, Università degli studi, Pavia

  • Reimers B, Maddalena F, Cacciavilani L et al (1994) La fosfocreatina nell’infarto miocardico acuto: studio randomizzato multicentrico. Il Cuore 11:345–354

  • Roberts JJ, Walker JB (1982) Feeding a creatine analogue delays ATP depletion and onset of rigor in ischemic heart. Am J Physiol Heart C Physiol 12:H911–H916

  • Robinson LA, Braimbridge MV, Hearse DJ (1984) Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia. J Thorac Cardiovasc Surg 87:190–200

  • Rosas HD, Doros G, Gevorkian S, Malarick K, Reuter M, Coutu JP, Triggs TD, Wilkens PJ, Matson W, Salat DH, Hersch SM (2014) PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 11;82(10):850–7

  • Rosenfeld J, King RM, Jackson CE, Bedlack RS, Barohn RJ, Dick A, Phillips LH, Chapin J, Gelinas DF, Lou JS (2008) Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS. Amyotroph Lateral Scler 9(5):266–272

    Article  CAS  PubMed  Google Scholar 

  • Röther J (2008) Neuroprotection does not work! Stroke 39(2):523–524

    Article  PubMed  Google Scholar 

  • Ruda MY, Samarenko MB, Afonskaya NI, Saks VA (1988) Reduction of ventricular arrhythmias by phosphocreatine (Neoton) in patients with acute myocardial infarction. Am Heart J 116:393–397

    Article  PubMed  Google Scholar 

  • Saks VA, Dzhaliashvili IV, Konorev EA, Strumia E (1992) Molecular and cellular aspects of the cardioprotective mechanism of phosphocreatine. Biokhimiia 57(12):1763–84. Article in Russian

  • Savitz SI, Fisher M (2007) Prophylactic neuroprotection. Curr Drug Targets 8(7):846–849

    Article  CAS  PubMed  Google Scholar 

  • Schiff SJ, Somjen GG (1987) The effect of graded hypoxia on the hippocampal slice: an in vitro model of the ischemic penumbra. Stroke. Jan-Feb 18(1):30–37

    CAS  Google Scholar 

  • Sestili P, Martinelli C, Colombo E, Barbieri E, Potenza L, Sartini S, Fimognari C (2011) Creatine as an antioxidant. Amino Acids 40(5):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Sestili P, Barbieri E, Stocchi V (2015) Effects of creatine in skeletal muscle cells and in myoblasts differentiating under normal or oxidatively stressing conditions. Mini Rev Med Chem. 16(1):4–11

    Article  Google Scholar 

  • Sharov VG, Saks VA, Kupriyanov VV et al (1987) Protection of ischemic myocardium by exogenous creatine phosphate: morphologic and phosphorus 31-nuclear magnetic resonance studies. J Thorac Cardiovasc Surg 94:749–761

    CAS  PubMed  Google Scholar 

  • Skřivánek O, Kalvach Pavel, Benetin Ján, Brzák M, Kukumberg I, Strnad P, Strnadová V, Traubner Pavol, Turčány P, Vávra P (1995) Waberžinek, Gerhard. Kreatinfosfát v léčbě akutních ischemických iktů. Prakticky Lekar 75:7–8

    Google Scholar 

  • Soboll S, Conrad A, Eistert A, Herick K, Krämer R (1997) Uptake of creatine phosphate into heart mitochondria: a leak in the creatine shuttle. Biochim Biophys Acta 1320(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Stefan Neubauer, Michael Horn, Klaus Schnackerz (1998) Manipulating creatine levels post-myocardial infarction chronic effects on left ventricular remodelling. Magn Reson Mater Phys, Biol Med 6:126–128

    Article  Google Scholar 

  • Stroke Therapy Academic Industry Roundtable (STAIR) (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30(12):2752–2758

    Article  Google Scholar 

  • Strumia E, Pelliccia F, D’Ambrosio G (2012) Creatine phosphate: pharmacological and clinical perspectives. Adv Ther. 29(2):99–123

    Article  CAS  PubMed  Google Scholar 

  • Tokarska-Schlattner M, Epand RF, Meiler F, Zandomeneghi G, Neumann D, Widmer HR, Meier BH, Epand RM, Saks V, Wallimann T, Schlattner U (2012) Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One 7(8):e43178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittingham TS, Lipton P (1981) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621

    Article  Google Scholar 

  • Turner CE, Byblow WD, Gant N (2015) Creatine supplementation enhances corticomotor excitability and cognitive performance during oxygen deprivation. J Neurosci 35(4):1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Volek JS, Rawson ES (2004) Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition 20(7–8):609–614

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster I, Toit E F Du, HuisamenB and Lochner A (2012) The effect of creatine supplementation on myocardial function, mitochondrial respiration and susceptibility to ischaemia/reperfusion injury in sedentary and exercised rats. Acta Physiol 206:6–19

  • Wick M, Fujimori H, Michaelis T, Frahm J (1999) Brain water diffusion in normal and creatine-supplemented rats during transient global ischemia. Magn Reson Med 42(4):798–802

    Article  CAS  PubMed  Google Scholar 

  • Wild E (2015) http://en.hdbuzz.net/181. Accessed 18 Jan 2016

  • Wilken B1, Ramirez JM, Probst I, Richter DW, Hanefeld F (1998) Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res 43(1):8–14

  • Woo YJ, Grand TJ, Zentko S et al (2005) Creatine phosphate administration preserves myocardial function in a model of off-pump coronary revascularization. J Cardiovasc Surg 46:297–305

    CAS  Google Scholar 

  • Woznicki DT, Walker JB (1980) Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves. J Neurochem 34(5):1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Yoneda K, Okada Y (1989) Effects of anoxia and recovery on the neurotransmission and level of high-energy phosphates in thin hippocampal slices from the guinea-pig. Neuroscience 28(2):401–407

    Article  CAS  PubMed  Google Scholar 

  • Yoneda K, Arakawa T, Asaoka Y, Fukuoka Y, Kinugasa K, Takimoto K, Okada Y (1983) Effects of accumulation of phosphocreatine on utilization and restoration of high-energy phosphates during anoxia and recovery in thin hippocampal slices from the guinea pig. Exp Neurol 82(1):215–22

  • Zhu S, Li M, Figueroa BE, Liu A, Stavrovskaya IG, Pasinelli P, Beal MF, Brown RH Jr, Kristal BS, Ferrante RJ, Friedlander RM (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci 24(26):5909–12

  • Zucchi R, Poddighe R, Limbruno U, Mariani M, Ronca-Testoni S, Ronca G (1989) Protection of isolated rat heart from oxidative stress by exogenous creatine phosphate. J Mol Cell Cardiol 21:67–73

Download references

Acknowledgments

Funding by Telethon Italy (grant number GEP 13019 to MB) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Balestrino.

Ethics declarations

Conflict of interest

Maurizio Balestrino and Enrico Adriano were among the founders of NovaNeuro Srl, a spin-off of the University of Genova whose aim is, among others, the invention and commercialization of creatine-based nutritional supplements.

Additional information

Handling Editor: T. Wallimann and R. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balestrino, M., Sarocchi, M., Adriano, E. et al. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease. Amino Acids 48, 1955–1967 (2016). https://doi.org/10.1007/s00726-016-2173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2173-8

Keywords

Navigation