Skip to main content
Log in

New studies about the insertion mechanism of Thymosin α1 in negative regions of model membranes as starting point of the bioactivity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Thymosin α1 is a peptidic hormone already used in the therapy of several diseases. Until now, the description of the precise receptor and mechanism for its action still remains elusive. The interaction of Thymosin α1, which is unstructured in water solution, has been recently studied in sodium dodecylsulphate micellar systems and it was reported that Thymosin α1 inserts in micelle assuming a conformation with two tracts of helix with a structural break in between. An investigation of its interaction both with micelles of dodecylphosphocholine alone and with mixed dodecylphosphocholine-sodium dodecylsulphate micelles is here reported. In these environments the results indicate that Thymosin α1 in phospholipidic membrane exposing choline polar heads interacts by aspecific modality and, oppositely, in the mixed dodecylphosphocholine-sodium dodecylsulphate micelles an insertion in the micellar hydrophobic region conformationally similar to that found in sodium dodecylsulphate micelles occurs. In presence of mixed micelles the insertion and structuration occur in preferred regions when the membrane models are negatively charged. From the point of view of the mechanism of action, insertion its N terminus in negative regions of membrane led to hypothesize that this process would be similar to a binding to phosphatidylserine exposed like in apoptotic cells. Thymosin α1 when inserted may interact with nearby proteins and/or receptors acting as effector and causing a biological signaling cascade. The recent attention to the phosphatidylserine exposure in cells may enforce the interest for these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TFE:

Trifluoroethanol

TSP:

Trimethylsilyl propionic acid sodium salt

DC:

Dendritic cell

SDS:

Sodium dodecyl sulfate

DPC:

Dodecylphosphocholine

Cmc:

Critical micellar concentration

References

  • Andreone P, Cursaro C, Gramenzi A, Margotti M, Ferri E, Talarico S, Biselli M, Felline F, Tuthill C, Martins E, Gasbarrini G, Bernardi M (2001) In vitro effect of thymosin-alpha1 and interferon-alpha on Th1 and Th2 cytokine synthesis in patients with chronic hepatitis. C J Viral Hepat 8:194–201

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  • Billich A (2002) Thymosin alpha1SciClone pharmaceuticals. Curr Opin Investig Drugs 3:698–707

    CAS  PubMed  Google Scholar 

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528

    CAS  Google Scholar 

  • Brunger AT (1993) XPLOR manual version 3.1. Yale University Press, New Haven

    Google Scholar 

  • Chen JM, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, Hewitt E, Watts C, Barrett AJ (1997) Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem 272:8090–8098

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Avram L, Frish L (2005) Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: an old parameter-new insights. Angew Chem Int Ed 44:520–554

    Article  CAS  Google Scholar 

  • Elizondo-Riojas MA, Chamow SM, Tuthill CW, Gorenstein DG, Volk DE (2011) NMR structure of human thymosin alpha-1. Biochem Biophys Res Commun 416:356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschenfeldt WH, Manrow RE, Krug MS, Berger SL (1989) Isolation and partial sequencing of the human prothymosin alpha gene family. Evidence against export of the gene products. J Biol Chem 264:7546–7555

    CAS  PubMed  Google Scholar 

  • Franco FJ, Diaz C, Barcia M, Freire M (1992) Thymosin alpha 1 is a native peptide in several tissues. Biochim Biophys Acta 1120:43–48

    Article  CAS  PubMed  Google Scholar 

  • Garaci E, Pica F, Serafino A, Balestrieri E, Matteucci C, Moroni G, Sorrentino R, Zonfrillo M, Pierimarchi P, Sinibaldi-Vallebona P (2012) Thymosin α1 and cancer: action on immune effector and tumor target cells. Ann N Y Acad Sci 1269:26–33

    Article  CAS  PubMed  Google Scholar 

  • Giuliani C, Napolitano G, Mastino A, Di Vincenzo S, D’Agostini C, Grelli S, Bucci I, Singer DS, Kohn LD, Monaco F, Garaci E, Favalli C (2000) Thymosin-alpha1 regulates MHC class I expression in FRTL-5 cells at transcriptional level. Eur J Immunol 30:778–786

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AL (2009) From lab to bedside: emerging clinical applications of thymosin alpha 1. Expert Opin Biol Ther 9:593–608

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AL, Guha A, Zatz MM, Hardy MA, White A (1972) Purification and biological activity of thymosin, a hormone of the thymus gland. Proc Natl Acad Sci 69:1800–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grottesi A, Sette M, Palamara T, Rotilio G, Garaci E, Paci M (1998) The conformation of peptide thymosin alpha 1 in solution and in a membrane like environment by circular dichroism and NMR spectroscopy. A possible model for its interaction with the lymphocyte membrane. Peptides 19:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Iino S, Toyota J, Kumada H, Kiyosawa K, Kakumu S, Sata M, Suzuki H, Martins EB (2005) The efficacy and safety of thymosin alpha-1 in Japanese patients with chronic hepatitis B; results from a randomized clinical trial. J Viral Hepat 12:300–306

    Article  CAS  PubMed  Google Scholar 

  • Knutsen AP, Freeman JJ, Mueller KR, Roodman ST, Bouhasin JD (1999) Thymosin-alpha1 stimulates maturation of CD34+ stem cells into CD3+ 4+ cells in an in vitro thymic epithelia organ coculture model. Int J Immunopharmacol 21:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kullavanuava P, Treeprasertsuk S, Thong-Ngam D, Chaermthai K, Gonlackanvit S, Suwanagool P (2001) The combined treatment of interferon alpha-2a and thymosin alpha 1 for chronic hepatitis C: the 48 weeks end of treatment results. J Med Assoc Thai 84:462–468

    Google Scholar 

  • Lao X, Liu M, Chen J, Zheng H (2013) A tumor-penetrating peptide modification enhances the antitumor activity of thymosin alpha 1. PLoS One 8(8):e72242

    Article  PubMed  PubMed Central  Google Scholar 

  • Leichtling KD, Serrate SA, Sztein MB (1990) Thymosin α1 modulates the expression of high-affinity IL-2 receptor on normal human lymphocytes. Int J Immunopharmacol 1:19–29

    Article  Google Scholar 

  • Low TL, Goldstein AL (1979) The chemistry and biology of thymosin. II. Amino acid sequence analysis of thymosin alpha1 and polypeptide be Tα1. J Biol Chem 254:987–995

    CAS  PubMed  Google Scholar 

  • Low TL, Thurman GB, McAdoo M, McClure J, Rossio JL, Naylor PH, Goldstein AL (1979) The chemistry and biology of thymosin. I. Isolation, characterization, and biological activities of thymosin alpha1 and polypeptide be Tα1 from calf thymus. J Biol Chem 254:981–986

    CAS  PubMed  Google Scholar 

  • Manrow RE, Sburlati AR, Hanover JA, Berger SL (1991) Nuclear targeting of prothymosin alpha. J Biol Chem 266:3916–3924

    CAS  PubMed  Google Scholar 

  • Marion D, Wuthrich K (1983) Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of (1)H–(1)H spin–spin coupling constants in proteins. Biochem Biophys Res Commun 113:967–974

    Article  CAS  PubMed  Google Scholar 

  • Morris KF Jr, Johnson CS (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc 114:3139–3141

    Article  CAS  Google Scholar 

  • Nepravishta R, Mandaliti W, Eliseo T, Sinibaldi Vallebona P, Pica F, Garaci E, Paci M (2015) Thymosin α1 inserts N-terminus into model membranes assuming a helical conformation. Expert Opin Biol Ther

  • Omichinski JG, Pedone PV, Felsenfeld G, Clore GM (1997) The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat Struct Biol 4:122–132

    Article  CAS  PubMed  Google Scholar 

  • Romani L, Bistoni F, Gaziano R, Bozza S, Montagnoli C, Perruccio K, Pitzurra L, Bellocchio S, Velardi A, Rasi G, Di Francesco P, Garaci E (2004) Thymosin alpha 1 activates dendritic cells for antifungal Th1 resistance through toll-like receptor signaling. Blood 103:4232–4239

    Article  CAS  PubMed  Google Scholar 

  • Romani L, Moretti S, Fallarino F, Bozza S, Ruggeri L, Casagrande A, Aversa F, Bistoni F, Velardi A, Garaci E (2012) Jack of all trades: thymosin α1 and its pleiotropy. Ann N Y Acad Sci 1269:1–6

    Article  CAS  PubMed  Google Scholar 

  • Sarandeses CS, Covelo G, Díaz-Jullien C, Freire M (2003) Prothymosin alpha is processed to thymosin alpha 1 and thymosin alpha 11 by a lysosomal asparaginyl endopeptidase. J Biol Chem 278:13286–13293

    Article  CAS  PubMed  Google Scholar 

  • Sargent DF, Schwyzer R (1986) Membrane lipid phase as catalyst for peptide receptor interactions. Proc Natl Acad Sci 83:5774–5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serafino A, Pica F, Andreola F, Gaziano R, Moroni N, Moroni G, Zonfrillo M, Pierimarchi P, Sinibaldi-Vallebona P, Garaci E (2014) Thymosin α1 activates complement receptor-mediated phagocytosis in human monocyte-derived macrophages. J. Innate Immun 6:72–88

    Article  CAS  PubMed  Google Scholar 

  • Toniolo C, Polese A, Formaggio F, Crisma M, Kamphuis J (1996) Circular dichroism spectrum of a peptide 310-helix. J Am Chem Soc 118:2744–2745

    Article  CAS  Google Scholar 

  • Toniolo C, Formaggio F, Tognon S, Broxterman QB, Kaptein B, Huang R, Setnicka V, Keiderling TA, McColl IH, Hecht L, Barron LD (2004) The complete chirospectroscopic signature of the peptide 310-helix in aqueous solution. Biopolymers 75:32–45

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • You J, Zhuang L, Cheng HY, Yan SM, Yu L, Huang JH, Tang BZ, Huang ML, Ma YL, Chongsuvivatwong V, Sriplung H, Geater A, Qiao YW, Wu RX (2006) Efficacy of thymosin alpha-1 and interferon alpha in treatment of chronic viral hepatitis B: a randomized controlled study. World J Gastroenterol 12:6715–6721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetter BR (1997) On target with tumor blood vessel markers. Nat Biotechnol 15:1243–1244

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Chan J, Dragoi AM, Gong X, Ivanov S, Li ZW, Chuang T, Tuthill C, Wan Y, Karin M, Chu WM (2005) Activation of IKK by thymosin α1 requires the TRAF6 signaling pathway. EMBO Rep 6:531–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The technical assistance of Fabio Bertocchi in NMR instrumentations mantainance is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Paci.

Ethics declarations

Conflict of interest

The authors declare do not have conflicts of interests.

Additional information

Handling Editor: M. S. Palma.

W. Mandaliti and R. Nepravishta equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandaliti, W., Nepravishta, R., Vallebona, P.S. et al. New studies about the insertion mechanism of Thymosin α1 in negative regions of model membranes as starting point of the bioactivity. Amino Acids 48, 1231–1239 (2016). https://doi.org/10.1007/s00726-016-2169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2169-4

Keywords

Navigation