Skip to main content

Advertisement

Log in

A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Hyperammonemia is a common finding in children with methylmalonic acidemia. However, its contribution to methylmalonate-induced excitotoxicty is poorly understood. The aim of this study was to evaluate the mechanisms by which ammonia influences in the neurotoxicity induced by methylmalonate (MMA) in mice. The effects of ammonium chloride (NH4Cl 3, 6, and 12 mmol/kg; s.c.) on electroencephalographic (EEG) and behavioral convulsions induced by MMA (0.3, 0.66, and 1 µmol/2 µL, i.c.v.) were observed in mice. After, ammonia, TNF-α, IL1β, IL-6, nitrite/nitrate (NOx) levels, mitochondrial potential (ΔΨ), reactive oxygen species (ROS) generation, Methyl-Tetrazolium (MTT) reduction, succinate dehydrogenase (SDH), and Na+, K+-ATPase activity levels were measured in the cerebral cortex. The binding of [3H]flunitrazepam, release of glutamate-GABA; glutamate decarboxylase (GAD) and glutamine synthetase (GS) activity and neuronal damage [opening of blood brain barrier (BBB) permeability and cellular death volume] were also measured. EEG recordings showed that an intermediate dose of NH4Cl (6 mmol/kg) increased the duration of convulsive episodes induced by MMA (0.66 μmol/2 μL i.c.v). NH4Cl (6 mmol/kg) administration also induced neuronal ammonia and NOx increase, as well as mitochondrial ROS generation throughout oxidation of 2,7-dichlorofluorescein diacetate (DCFH-DA) to DCF-RS, followed by GS and GAD inhibition. The NH4Cl plus MMA administration did not alter cytokine levels, plasma fluorescein extravasation, or neuronal damage. However, it potentiated DCF-RS levels, decreased the ΔΨ potential, reduced MTT, inhibited SDH activity, and increased Na+, K+-ATPase activity. NH4Cl also altered the GABA cycle characterized by GS and GAD activity inhibition, [3H]flunitrazepam binding, and GABA release after MMA injection. On the basis of our findings, the changes in ROS and reactive nitrogen species (RNS) levels elicited by ammonia alter the glycine/glutamate (GABA) cycle and contribute to MMA-induced excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197

    Article  CAS  PubMed  Google Scholar 

  • Albers RW, Brady RO (1959) The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey. J Biol Chem 234:926–928

    CAS  PubMed  Google Scholar 

  • Albrecht J, Zielinska M, Norenberg MD (2010) Glutamine as a mediator of ammonia neurotoxicity: a critical appraisal. Biochem Pharmacol 80:1303–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Thakar JH, Johnson PL, Shanklin DR (1991) Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Anal Biochem 192:344–349

    Article  CAS  PubMed  Google Scholar 

  • Bidmon HJ, Gorg B, Palomero-Gallagher N, Schleicher A, Haussinger D, Speckmann EJ, Zilles K (2008) Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia 49:1733–1748

    Article  CAS  PubMed  Google Scholar 

  • Blei AT, Olafsson S, Therrien G, Butterworth RF (1994) Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24:95–102

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976a) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976b) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612

    Article  CAS  PubMed  Google Scholar 

  • Briggs SW, Galanopoulou AS (2011) Altered GABA signaling in early life epilepsies. Neural Plast 2011:527605

    PubMed  PubMed Central  Google Scholar 

  • Cauli O, Llansola M, Rodrigo R, El Mlili N, Errami M, Felipo V (2005) Altered modulation of motor activity by group I metabotropic glutamate receptors in the nucleus accumbens in hyperammonemic rats. Metab Brain Dis 20:347–358

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Farooqui R, Kesler N (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94:4890–4894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper AJ, Lai JC (1987) Cerebral ammonia metabolism in normal and hyperammonemic rats. Neurochem Pathol 6:67–95

    Article  CAS  PubMed  Google Scholar 

  • Coude FX, Sweetman L, Nyhan WL (1979) Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 64:1544–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mello DM, Freitas CG, Neto JM, Paschoalini MA (1996) Participation of the autonomic nervous system in lipolysis induced by intraventricular injection of carbachol in the pigeon. J Auton Nerv Syst 59:83–86

    Article  PubMed  Google Scholar 

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142C:104–112

    Article  CAS  PubMed  Google Scholar 

  • Dionisi-Vici C, Deodato F, Roschinger W, Rhead W, Wilcken B (2006) ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis 29:383–389

    Article  CAS  PubMed  Google Scholar 

  • Dunlop DS, van Elden W, Lajtha A (1975) A method for measuring brain protein synthesis rates in young and adult rats. J Neurochem 24:337–344

    Article  CAS  PubMed  Google Scholar 

  • Eid T, Behar K, Dhaher R, Bumanglag AV, Lee TS (2012) Roles of glutamine synthetase inhibition in epilepsy. Neurochem Res 37:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eid T, Tu N, Lee TS, Lai JC (2013) Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int 63:670–681

    Article  CAS  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Rosenberg LE (1995) Disorders of propionate and methylmalonate metabolism. In: The metabolic bases of inherited disease. Scriver CR et al. (eds), pp 1423–1449 New York: McGraw-Hill

  • Ferraro TN, Golden GT, Smith GG, St Jean P, Schork NJ, Mulholland N, Ballas C, Schill J, Buono RJ, Berrettini WH (1999) Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci 19:6733–6739

    CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1927) The Nature of the “inorganic phosphate” in voluntary muscle. Science 65:401–403

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt B, Vlaho S, Fischer D, Sewell A, Bohles H (2003) N-carbamylglutamate enhances ammonia detoxification in a patient with decompensated methylmalonic aciduria. Mol Genet Metab 79:303–304

    Article  CAS  PubMed  Google Scholar 

  • Gorg B, Qvartskhava N, Keitel V, Bidmon HJ, Selbach O, Schliess F, Haussinger D (2008) Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 48:567–579

    Article  PubMed  Google Scholar 

  • Green JD, Narahara HT (1980) Assay of succinate dehydrogenase activity by the tetrazolium method: evaluation of an improved technique in skeletal muscle fractions. J Histochem Cytochem 28:408–412

    Article  CAS  PubMed  Google Scholar 

  • Haussinger D, Gorg B, Reinehr R, Schliess F (2005) Protein tyrosine nitration in hyperammonemia and hepatic encephalopathy. Metab Brain Dis 20:285–294

    Article  PubMed  Google Scholar 

  • Iles JF, Jack JJ (1980) Ammonia: assessment of its action on postsynaptic inhibition as a cause of convulsions. Brain 103:555–578

    Article  CAS  PubMed  Google Scholar 

  • Jafari P, Braissant O, Zavadakova P, Henry H, Bonafe L, Ballhausen D (2013) Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolker S, Schwab M, Horster F, Sauer S, Hinz A, Wolf NI, Mayatepek E, Hoffmann GF, Smeitink JA, Okun JG (2003) Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem 278:47388–47393

    Article  PubMed  Google Scholar 

  • Kowaltowski AJ, Maciel EN, Fornazari M, Castilho RF (2006) Diazoxide protects against methylmalonate-induced neuronal toxicity. Exp Neurol 201:165–171

    Article  CAS  PubMed  Google Scholar 

  • Lee NC, Chien YH, Peng SF, Huang AC, Liu TT, Wu AS, Chen LC, Hsu LW, Tseng SC, Hwu WL (2008) Brain damage by mild metabolic derangements in methylmalonic acidemia. Pediatr Neurol 39:325–329

    Article  PubMed  Google Scholar 

  • Lloyd KG, Bossi L, Morselli PL, Munari C, Rougier M, Loiseau H (1986) Alterations of GABA-mediated synaptic transmission in human epilepsy. Adv Neurol 44:1033–1044

    CAS  PubMed  Google Scholar 

  • Malfatti CR, Royes LF, Francescato L, Sanabria ER, Rubin MA, Cavalheiro EA, Mello CF (2003) Intrastriatal methylmalonic acid administration induces convulsions and TBARS production, and alters Na+ , K+-ATPase activity in the rat striatum and cerebral cortex. Epilepsia 44:761–767

    Article  CAS  PubMed  Google Scholar 

  • Malfatti CR, Perry ML, Schweigert ID, Muller AP, Paquetti L, Rigo FK, Fighera MR, Garrido-Sanabria ER, Mello CF (2007) Convulsions induced by methylmalonic acid are associated with glutamic acid decarboxylase inhibition in rats: a role for GABA in the seizures presented by methylmalonic acidemic patients? Neuroscience 146:1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Marisco Pda C, Ribeiro MC, Bonini JS, Lima TT, Mann KC, Brenner GM, Dutra-Filho CS, Mello CF (2003) Ammonia potentiates methylmalonic acid-induced convulsions and TBARS production. Exp Neurol 182:455–460

    Article  PubMed  Google Scholar 

  • McLaughlin BA, Nelson D, Silver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86:279–290

    Article  CAS  PubMed  Google Scholar 

  • Melo DR, Mirandola SR, Assuncao NA, Castilho RF (2012) Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvent of mitochondrial glutamate metabolism. J Neurosc Res 90:1190–1199

    Article  CAS  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  • Moraes ER, Grisolia AB, Oliveira KR, Picanco-Diniz DL, Crespo-Lopez ME, Maximino C, Batista Ede J, Herculano AM (2012) Determination of glutamate uptake by high performance liquid chromatography (HPLC) in preparations of retinal tissue. J Chromatogr B Analyt Technol Biomed Life Sci 907:1–6

    Article  CAS  PubMed  Google Scholar 

  • Morath MA, Okun JG, Muller IB, Sauer SW, Horster F, Hoffmann GF, Kolker S (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria—a pathophysiological approach. J Inherit Metab Dis 31:35–43

    Article  CAS  PubMed  Google Scholar 

  • Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO (2008) Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 89:467–473

    Article  CAS  PubMed  Google Scholar 

  • Nathanson JA, McKee M (1995) Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye. Invest Ophthalmol Vis Sci 36:1765–1773

    CAS  PubMed  Google Scholar 

  • Ott P, Vilstrup H (2014) Cerebral effects of ammonia in liver disease: current hypotheses. Metab Brain Dis 29:901–911

    Article  CAS  PubMed  Google Scholar 

  • Packman S, Mahoney MJ, Tanaka K, Hsia YE (1978) Severe hyperammonemia in a newborn infant with methylmalonyl-CoA mutase deficiency. J Pediatr 92:769–771

    Article  CAS  PubMed  Google Scholar 

  • Paul V (2003) Inhibition of acute hyperammonemia-induced convulsions by systemically administered gamma aminobutyric acid in rats. Pharmacol Biochem Behav 74:523–528

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569:275–280

    Article  CAS  PubMed  Google Scholar 

  • Raabe W (1993) Effects of hyperammonemia on neuronal function: NH4+ , IPSP and Cl(−)-extrusion. Adv Exp Med Biol 341:71–82

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LR, Fighera MR, Oliveira MS, Furian AF, Rambo LM, Ferreira AP, Saraiva AL, Souza MA, Lima FD, Magni DV, Dezengrini R, Flores EF, Butterfield DA, Ferreira J, dos Santos AR, Mello CF, Royes LF (2009) Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci 27:157–163

    Article  CAS  PubMed  Google Scholar 

  • Robitaille Y, Kemball K, Sherwin AL (1995) beta-alanine uptake is upregulated in FeCl3-induced cortical scars. J Neurol Sci 134(Suppl):95–101

    Article  CAS  PubMed  Google Scholar 

  • Rose C, Felipo V (2005) Limited capacity for ammonia removal by brain in chronic liver failure: potential role of nitric oxide. Metab Brain Dis 20:275–283

    Article  CAS  PubMed  Google Scholar 

  • Salvadori MG, Bandero CR, Jesse AC, Gomes AT, Rambo LM, Bueno LM, Bortoluzzi VT, Oliveira MS, Mello CF (2012) Prostaglandin E(2) potentiates methylmalonate-induced seizures. Epilepsia 53:189–198

    Article  CAS  PubMed  Google Scholar 

  • Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  • Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic Control of Biosynthesis and Turnover of the Neurotransmitters Glutamate and GABA. Front Endocrinol (Lausanne) 4:102

    Google Scholar 

  • Sehar N, Agarwal NB, Vohora D, Raisuddin S (2015) Atorvastatin prevents development of kindling by modulating hippocampal levels of dopamine, glutamate, and GABA in mice. Epilepsy Behav 42:48–53

    Article  PubMed  Google Scholar 

  • Skowronska M, Albrecht J (2012) Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 21:236–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skowronska M, Albrecht J (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 62:731–737

    Article  CAS  PubMed  Google Scholar 

  • Stewart PM, Walser M (1980) Failure of the normal ureagenic response to amino acids in organic acid-loaded rats. Proposed mechanism for the hyperammonemia of propionic and methylmalonic acidemia. J Clin Invest 66:484–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez I, Bodega G, Fernandez B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142

    Article  CAS  PubMed  Google Scholar 

  • Summar M (2001) Current strategies for the management of neonatal urea cycle disorders. J Pediatr 138:S30–S39

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825–H829

    CAS  PubMed  Google Scholar 

  • Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566

    CAS  PubMed  Google Scholar 

  • Viegas CM, Zanatta A, Grings M, Hickmann FH, Monteiro WO, Soares LE, Sitta A, Leipnitz G, de Oliveira FH, Wajner M (2014) Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res 48:659–669

    Article  CAS  PubMed  Google Scholar 

  • Wolf B, Hsia YE, Tanaka K, Rosenberg LE (1978) Correlation between serum propionate and blood ammonia concentrations in propionic acidemia. J Pediatr 93:471–473

    Article  CAS  PubMed  Google Scholar 

  • Yanagawa Y, Nishi K, Sakamoto T (2008) Hyperammonemia is associated with generalized convulsion. Intern Med 47:21–23

    Article  PubMed  Google Scholar 

  • Zielinska M, Popek M, Albrecht J (2014) Roles of changes in active glutamine transport in brain edema development during hepatic encephalopathy: an emerging concept. Neurochem Res 39:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zieminska E, Dolinska M, Lazarewicz JW, Albrecht J (2000) Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology 21:295–300

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNPq (grants: Pronem: 11/2082-4). M.R. Fighera, L.F.F. Royes Furian A.F.; Schneider-Oliveira M are recipients of CNPq fellowships. The authors thank Gustavo Cassol for revision of references. All authors confirm that there is no competing financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Rechia Fighera.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Additional information

Handling Editor: T. Harkany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royes, L.F.F., Gabbi, P., Ribeiro, L.R. et al. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability. Amino Acids 48, 1373–1389 (2016). https://doi.org/10.1007/s00726-015-2164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2164-1

Keywords

Navigation