Skip to main content
Log in

Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The present manuscript reports on the identification of various dehydroamino acid-derived bonds and cross-links resulting from thermal treatment (excess water, 240 min, 130 °C) of two model food proteins, bovine serum albumin, and wheat gliadin. S-Carbamidomethylated tryptic and chymotryptic digests of unheated (control) and heated serum albumin and gliadin, respectively, were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC–ESI–MS/MS) with higher-energy collisional dissociation (HCD). Heat-induced β-elimination of cystine, serine and threonine, and subsequent Michael addition of cysteine and lysine to dehydroalanine and 3-methyl-dehydroalanine were demonstrated. Lanthionine, lysinoalanine, 3-methyl-lanthionine, and 3-methyl-lysinoalanine were identified. The detection of inter-chain lanthionine in both bovine serum albumin and wheat gliadin suggests the significance of these cross-links for food texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anon (1989) Mechanism of toxicity of lysinoalanine. Nutr Rev 47(11):362–364

    Google Scholar 

  • AOAC (1995) Protein (crude) in animal feed: combustion method (990.03). In: AOAC (ed) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  • Arntfield SD, Murray ED, Ismond MAH (1991) Role of disulfide bonds in determining the rheological and microstructural properties of heat-induced protein networks from ovalbumin and vicilin. J Agric Food Chem 39(8):1378–1385

    Article  CAS  Google Scholar 

  • Bachi A, Dalle-Donne I, Scaloni A (2012) Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 113(1):596–698

    Article  PubMed  Google Scholar 

  • Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2012) Wheat gluten functionality as a quality determinant in cereal-based food products. Ann Rev Food Sci Technol 3(1):469–492

    Article  CAS  Google Scholar 

  • Friedman M (1999) Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J Agric Food Chem 47(4):1295–1319

    Article  CAS  PubMed  Google Scholar 

  • Fukao M, Obita T, Yoneyama F, Kohda D, Zendo T, Nakayama J, Sonomoto K (2008) Complete covalent structure of nisin Q, new natural nisin variant, containing post-translationally modified amino acids. Biosci Biotechnol Biochem 72(7):1750–1755

    Article  CAS  PubMed  Google Scholar 

  • Gerrard JA (2002) Protein-protein crosslinking in food: methods, consequences, applications. Trends Food Sci Tech 13(12):391–399

    Article  CAS  Google Scholar 

  • Ghate V, Leong AL, Kumar A, Bang WS, Zhou WB, Yuk HG (2015) Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiol 48:49–57

    Article  CAS  PubMed  Google Scholar 

  • Guedes S, Vitorino R, Domingues R, Amado F, Domingues P (2009) Oxidation of bovine serum albumin: identification of oxidation products and structural modifications. Rapid Commun Mass Spectrom 23(15):2307–2315

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Mukai K, Gotoh M, Honjo S, Matoba T (1987) Determination of the lysinoalanine content in commercial foods by gas chromatography-selected ion monitoring. Agric Biol Chem 51(11):2889–2894

    Article  CAS  Google Scholar 

  • Jacob C, Battaglia E, Burkholz T, Peng D, Bagrel D, Montenarh M (2011) Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Chem Res Toxicol 25(3):588–604

    Article  PubMed  Google Scholar 

  • Jiang J, Xiong YL, Newman MC, Rentfrow GK (2012) Structure-modifying alkaline and acidic pH-shifting processes promote film formation of soy proteins. Food Chem 132(4):1944–1950

    Article  CAS  Google Scholar 

  • Kaletta C, Entian KD, Jung G (1991) Prepeptide sequence of cinnamycin (Ro 09-0198)—the 1st structural gene of a duramycin-type lantibiotic. Eur J Biochem 199(2):411–415

    Article  CAS  PubMed  Google Scholar 

  • Kearns JE, Maclaren JA (1979) Lanthionine cross-links and their effects in solubility tests on wool. J Textile Instit 70(12):534–536

    Article  CAS  Google Scholar 

  • Kellner R, Jung G, Hörner T, Zähner H, Schnell N, Entian K-D, Götz F (1988) Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 177(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Kleinnijenhuis AJ, Duursma MC, Breukink E, Heeren RM, Heck AJ (2003) Localization of intramolecular monosulfide bridges in lantibiotics determined with electron capture induced dissociation. Anal Chem 75(13):3219–3225

    Article  CAS  PubMed  Google Scholar 

  • Liener IE (1994) Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34(1):31–67

    Article  CAS  PubMed  Google Scholar 

  • Lindsay MP, Skerritt JH (1999) The glutenin macropolymer of wheat flour doughs: structure-function perspectives. Trends Food Sci Tech 10(8):247–253

    Article  CAS  Google Scholar 

  • Lowe EK, Anema SG, Bienvenue A, Boland MJ, Creamer LK, Jimenez-Flores R (2004) Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine beta-lactoglobulin and kappa-casein. J Agric Food Chem 52(25):7669–7680

    Article  CAS  PubMed  Google Scholar 

  • Marsilio V, Lanza B (1995) Effects of lye-treatment on the nutritional and microstructural characteristics of table olives (Olea europea L.). Rev Esp Cienc Technol Aliment 35(2):178–190

    Google Scholar 

  • Opstvedt J, Miller R, Hardy RW, Spinelli J (1984) Heat-induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri). J Agric Food Chem 32(4):929–935

    Article  CAS  Google Scholar 

  • Pfaender P (1983) Lysinoalanine—a toxic compound in processed proteinaceous foods. World Rev Nutr Diet 41:97–109

    Article  CAS  PubMed  Google Scholar 

  • Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12(6):746–754

    Article  CAS  PubMed  Google Scholar 

  • Rombouts I, Lamberts L, Celus I, Lagrain B, Brijs K, Delcour JA (2009) Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. J Chromatogr A 1216(29):5557–5562

    Article  CAS  PubMed  Google Scholar 

  • Rombouts I, Lagrain B, Brijs K, Delcour JA (2010) Beta-elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline pH. J Cereal Sci 52(3):362–367

    Article  CAS  Google Scholar 

  • Rombouts I, Lagrain B, Brijs K, Delcour JA (2012) Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids 42(6):2429–2438

    Article  CAS  PubMed  Google Scholar 

  • Rombouts I, Lagrain B, Brunnbauer M, Delcour JA, Koehler P (2013) Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry. Sci Rep 3:2279. doi:10.1038/srep02279

    Article  PubMed  PubMed Central  Google Scholar 

  • Rombouts I, Lagrain B, Scherf KA, Koehler P, Delcour JA (2015) Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci Rep 5:12210. doi:10.1038/srep12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P (2013) Post-translational modifications and mass spectrometry detection. Free Radical Bio Med 65:925–941

    Article  CAS  Google Scholar 

  • Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TRW, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian W-J (2014) Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radical Bio Med 67:460–470

    Article  CAS  Google Scholar 

  • Thakur S, Balaram P (2009) Characterization of alkali induced formation of lanthionine, trisulfides, and tetrasulfides from peptide disulfides using negative ion mass spectrometry. J Am Soc Mass Spectr 20(5):783–791

    Article  CAS  Google Scholar 

  • Thomas JA, Mallis RJ (2001) Aging and oxidation of reactive protein sulfhydryls. Exp Gerontol 36(9):1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Tou JS, Violand BN, Chen ZY, Carroll JA, Schlittler MR, Egodage K, Poruthoor S, Lipartito C, Basler DA, Cagney JW, Storrs SB (2009) Two novel bovine somatotropin species generated from a common dehydroalanine intermediate. Protein J 28(2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sc 10(6):614–625

    Article  CAS  Google Scholar 

  • Wall JS (1971) Disulfide bonds. Determination, location, and influence on molecular properties of proteins. J Agric Food Chem 19(4):619–625

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24(2):143–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Chou CP, Moo-Young M (2011) Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnol Adv 29(6):923–929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is part of the Methusalem programme “Food for the future” at the KU Leuven. I. Rombouts wishes to acknowledge the Research Foundation-Flanders (FWO, Brussels, Belgium) for a function as postdoctoral researcher. W. Vermaelen is gratefully thanked for his technical assistance. J. A. Delcour is W. K. Kellogg Chair in Cereal Science and Nutrition at the KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ine Rombouts.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: P. R. Jungblut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rombouts, I., Lambrecht, M.A., Carpentier, S.C. et al. Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation. Amino Acids 48, 959–971 (2016). https://doi.org/10.1007/s00726-015-2139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2139-2

Keywords

Navigation