Skip to main content

Advertisement

Log in

β-Hydroxy-β-methylbutyrate, mitochondrial biogenesis, and skeletal muscle health

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The metabolic roles of mitochondria go far beyond serving exclusively as the major producer of ATP in tissues and cells. Evidence has shown that mitochondria may function as a key regulator of skeletal muscle fiber types and overall well-being. Maintaining skeletal muscle mitochondrial content and function is important for sustaining health throughout the lifespan. Of great importance, β-hydroxy-β-methylbutyrate (HMB, a metabolite of l-leucine) has been proposed to enhance the protein deposition and efficiency of mitochondrial biogenesis in skeletal muscle, as well as muscle strength in both exercise and clinical settings. Specifically, dietary supplementation with HMB increases the gene expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), which represents an upstream inducer of genes of mitochondrial metabolism, coordinates the expression of both nuclear- and mitochondrion-encoded genes in mitochondrial biogenesis. Additionally, PGC-1α plays a key role in the transformation of skeletal muscle fiber type, leading to a shift toward type I muscle fibers that are rich in mitochondria and have a high capacity for oxidative metabolism. As a nitrogen-free metabolite, HMB holds great promise to improve skeletal muscle mass and function, as well as whole-body health and well-being of animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

BCAA:

Branched-chain amino acid(s)

BCAAem:

Branched-chain amino acid-enriched mixture

CaMK:

Calmodulin-dependent protein kinase

CaMKKβ:

Ca2+-activated kinase calmodulin-dependent kinase kinase-β

EDL:

Extensor digitorum longus

ERRα:

Estrogen-related receptor α

HMB:

β-Hydroxy-β-methylbutyrate

LBM:

Lean body mass

LKB1:

Liver kinase B1

Mef2:

Myocyte enhancer factor 2

MHC:

Myosin heavy chain

OXPHOS:

Oxidative phosphorylation

PGC-1α:

Peroxisome proliferator-activated receptor gamma co-activator 1-alpha

PPARα:

Peroxisome proliferator-activated receptor α

ROS:

Reactive oxygen species

SIRT1:

Silent information regulator transcript 1

TFAM:

Mitochondrial transcription factor A

References

  • Ahn BH, Kim HS, Song SW et al (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105:14447–14452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aquilano K, Vigilanza P, Baldelli S et al (2010) Peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha) and sirtuin 1 (SIRT1) reside in mitochondria possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arany Z, Novikov M, Chin S et al (2006) Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci USA 103:10086–10091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aspnes LE, Lee CM, Weindruch R et al (1997) Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J 11:573–581

    PubMed  CAS  Google Scholar 

  • Bazer FW, Ying W, Wang XQ et al (2015) The many faces of interferon tau. Amino Acids 47:449–460

    Article  PubMed  CAS  Google Scholar 

  • Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    PubMed  CAS  Google Scholar 

  • Bruckbauer A, Zemel MB (2013) Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity. Diabetes Metab Syndr Obes 6:93–102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Buler M, Aatsinki SM, Izzi V et al (2014) SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J 28:3225–3237

    Article  PubMed  CAS  Google Scholar 

  • Calvo S, Venepally P, Cheng J et al (1999) Fiber-type-specific transcription of the troponin l slow gene is regulated by multiple elements. Mol Cell Biol 19:515–525

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calvo JA, Daniels TG, Wang X et al (2008) Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104:1304–1312

    Article  PubMed  CAS  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Canto C, Jiang LQ, Deshmukh AS et al (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chalkiadaki A, Igarashi M, Nasamu AS et al (2014) Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy. PLoS Genet 10:e1004490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng W, Phillips B, Abumrad N (1997) Beta-hydroxy-beta-methyl butyrate increases fatty acid oxidation by muscle cells. FASEB J 11:A381

    Google Scholar 

  • Cheng W, Phillips B, Abumrad N (1998) Effect of HMB on fuel utilization, membrane stability and creatine kinase content of cultured muscle cells. FASEB J 12:A950

    Google Scholar 

  • Clark RH, Feleke G, Din M et al (2000) Nutritional treatment for acquired immunodeficiency virus-associated wasting using beta-hydroxy beta-methylbutyrate, glutamine, and arginine: a randomized, double-blind, placebo-controlled study. JPEN J Parenter Enteral Nutr 24:133–139

    Article  PubMed  CAS  Google Scholar 

  • Columbus DA, Fiorotto ML, Davis TA (2015) Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 47:259–270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(2):S67–S79

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y et al (2013) Nitric oxide and energy metabolism in mammals. BioFactors 39:383–391

    Article  PubMed  CAS  Google Scholar 

  • D’Antona G, Ragni M, Cardile A et al (2010) Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab 12:362–372

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Suryawan A, Orellana RA et al (2010) Amino acids and insulin are regulators of muscle protein synthesis in neonatal pigs. Animal 4:1790–1796

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Moura MB, dos Santos LS, Van Houten B (2010) Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 51:391–405

    PubMed  Google Scholar 

  • Demling RH (2009) Nutrition, anabolism, and the wound healing process: an overview. Eplasty 9:e9

    PubMed Central  PubMed  Google Scholar 

  • Drey M (2011) Sarcopenia—pathophysiology and clinical relevance. Wien Med Wochenschr 161:402–408

    Article  PubMed  Google Scholar 

  • Duan Y, Li F, Li Y et al (2015a) The role of leucine and its metabolites in protein and energy metabolism. Amino Acids. doi:10.1007/s00726-015-2067-1

    Google Scholar 

  • Duan YH, Li FN, Liu HN et al (2015b) Nutritional and regulatory roles of leucine in muscle growth and fat reduction. Front Biosci Landmark 20:796–813

    Article  Google Scholar 

  • Duan YH, Li FN, Tan KR et al (2015c) Key mediators of intracellular amino acids signaling to mTORC1 activation. Amino Acids 47:857–867

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53:S96–S102

    Article  PubMed  CAS  Google Scholar 

  • Eddinger TJ, Moss RL (1987) Mechanical-properties of skinned single fibers of identified types from rat diaphragm. Am J Physiol 253:C210–C218

    PubMed  CAS  Google Scholar 

  • Eley HL, Russell ST, Baxter JH et al (2007) Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab 293:E923–E931

    Article  PubMed  CAS  Google Scholar 

  • Eley HL, Russell ST, Tisdale MJ (2008a) Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-alpha and angiotensin II by beta-hydroxy-beta-methylbutyrate. Am J Physiol Endocrinol Metab 295:E1417–E1426

    Article  PubMed  CAS  Google Scholar 

  • Eley HL, Russell ST, Tisdale MJ (2008b) Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by beta-hydroxy-betamethylbutyrate. Am J Physiol Endocrinol Metab 295:E1409–E1416

    Article  PubMed  CAS  Google Scholar 

  • Ennion S, Pereira JS, Sargeant AJ et al (1995) Characterization of human skeletal-muscle fibers according to the myosin heavy-chains they express. J Muscle Res Cell Motil 16:35–43

    Article  PubMed  CAS  Google Scholar 

  • Evans M, Rees A (2002) Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Saf 25:649–663

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Dittenhafer-Reed KE, Denu JM (2012) Sirtuin catalysis and regulation. J Biol Chem 287:42419–42427

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Figueiredo PA, Powers SK, Ferreira RM et al (2009) Aging impairs skeletal muscle mitochondrial bioenergetic function. J Gerontol A Biol Sci Med Sci 64:21–33

    Article  PubMed  CAS  Google Scholar 

  • Filhiol TM (2012) The effects of leucine on mitochondrial biogenesis and cell cycle in A-375 melanoma cells, Master Thesis. The University of Tennessee, Knoxville

    Google Scholar 

  • Fillmore N, Jacobs DL, Mills DB et al (2010) Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle. J Appl Physiol 109:511–520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R et al (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    PubMed  CAS  Google Scholar 

  • Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha. EMBO J 26:1913–1923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gouspillou G, Sgarioto N, Norris B et al (2014) The relationship between muscle fiber type-specific PGC-1 alpha content and mitochondrial content varies between rodent models and humans. PLoS One 9:e103044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Handschin C, Chin S, Li P et al (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  PubMed  CAS  Google Scholar 

  • Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    Article  PubMed  CAS  Google Scholar 

  • Horton MJ, Brandon CA, Morris TJ et al (2001) Abundant expression of myosin heavy-chain IIB RNA in a subset of human masseter muscle fibres. Arch Oral Biol 46:1039–1050

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horvath TL, Erion DM, Elsworth JD et al (2011) GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function. Neurobiol Dis 43:152–162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hou YQ, Wang L, Yi D et al (2015a) N-acetylcysteine and intestinal health: a focus on mechanisms of its actions. Front Biosci 20:872–891

    Article  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015b) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Huss JM, Torra IP, Staels B et al (2004) Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor at signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24:9079–9091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jager S, Handschin C, St-Pierre J et al (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ et al (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  PubMed  CAS  Google Scholar 

  • Johnston APW, De Lisio M, Parise G (2008) Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab 33:191–199

    Article  PubMed  CAS  Google Scholar 

  • Joseph AM, Joanisse DR, Baillot RG et al (2012) Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. doi:10.1155/2012/642038

    PubMed Central  PubMed  Google Scholar 

  • Jowko E, Ostaszewski P, Jank M et al (2001) Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition 17:558–566

    Article  PubMed  CAS  Google Scholar 

  • Karagounis LG, Hawley JA (2010) Skeletal muscle: increasing the size of the locomotor cell. Int J Biochem Cell Biol 42:1376–1379

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Wilson JM, Lee SR (2010) Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem 21:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5:e11707

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kovarik M, Muthny T, Sispera L et al (2010) Effects of beta-hydroxy-beta-methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. J Physiol Biochem 66:311–319

    Article  PubMed  CAS  Google Scholar 

  • Koves TR, Li P, An J et al (2005) Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280:33588–33598

    Article  PubMed  CAS  Google Scholar 

  • Lage R, Dieguez C, Vidal-Puig A et al (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549

    Article  PubMed  CAS  Google Scholar 

  • Leone TC, Lehman JJ, Finck BN et al (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li F, Yin Y, Tan B et al (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Li HL, Xu MJ, Lee J et al (2012) Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab 303:E1234–E1244

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang C, Curry BJ, Brown PL et al (2014) Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. J Nutr Metab 2014:239750

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    Article  PubMed  CAS  Google Scholar 

  • Lombard DB, Alt FW, Cheng HL et al (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  PubMed  CAS  Google Scholar 

  • Molfino A, Gioia G, Rossi Fanelli F et al (2013) Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials. Amino Acids 45:1273–1292

    Article  PubMed  CAS  Google Scholar 

  • Mootha VK, Bunkenborg J, Olsen JV et al (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640

    Article  PubMed  CAS  Google Scholar 

  • Murgia M, Serrano AL, Calabria E et al (2000) Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2:142–147

    Article  PubMed  CAS  Google Scholar 

  • Narkar VA, Downes M, Yu RT et al (2008) AMPK and PPARdelta agonists are exercise mimetics. Cell 134:405–415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naya FJ, Mercer B, Shelton J et al (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275:4545–4548

    Article  PubMed  CAS  Google Scholar 

  • Nissen SL, Abumrad NN (1997) Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8:300–311

    Article  CAS  Google Scholar 

  • Nissen SL, Sharp RL (2003) Effect of dietary supplements on lean mass and strength gains with resistance exercise: a meta-analysis. J Appl Physiol 94:651–659

    Article  PubMed  CAS  Google Scholar 

  • Nissen S, Sharp R, Ray M et al (1996) Effect of leucine metabolite beta-hydroxy-beta-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81:2095–2104

    PubMed  CAS  Google Scholar 

  • Noh KK, Chung KW, Choi YJ et al (2014) Beta-hydroxy-beta-methylbutyrate improves dexamethasone-induced muscle atrophy by modulating the muscle degradation pathway in SD rat. PLoS One 9:e102947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olson EN, Williams RS (2000) Remodeling muscles with calcineurin. BioEssays 22:510–519

    Article  PubMed  CAS  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pansarasa O, Flati V, Corsetti G et al (2008) Oral amino acid supplementation counteracts age-induced sarcopenia in elderly rats. Am J Cardiol 101:35e–41e

    Article  PubMed  CAS  Google Scholar 

  • Panton LB, Rathmacher JA, Baier S et al (2000) Nutritional supplementation of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) during resistance training. Nutrition 16:734–739

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Hofer HW (1979) The constant proportion enzyme group concept in the selection of reference enzymes in metabolism. Ciba Found Symp 73:231–244

    PubMed  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    PubMed  CAS  Google Scholar 

  • Pimentel GD, Rosa JC, Lira FS et al (2011) Beta-hydroxy-beta-methylbutyrate (HMbeta) supplementation stimulates skeletal muscle hypertrophy in rats via the mTOR pathway. Nutr Metab (Lond) 8:11

    Article  CAS  Google Scholar 

  • Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607

    Article  PubMed  CAS  Google Scholar 

  • Price NL, Gomes AP, Ling AJY et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prince FP, Hikida RS, Hagerman FC et al (1981) A morphometric analysis of human-muscle fibers with relation to fiber types and adaptations to exercise. J Neurol Sci 49:165–179

    Article  PubMed  CAS  Google Scholar 

  • Rasbach KA, Gupta RK, Ruas JL et al (2010) PGC-1alpha regulates a HIF2alpha-dependent switch in skeletal muscle fiber types. Proc Natl Acad Sci USA 107:21866–21871

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rivero JLL, Talmadge RJ, Edgerton VR (1998) Fibre size and metabolic properties of myosin heavy chain-based fibre types in rat skeletal muscle. J Muscle Res Cell Motil 19:733–742

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z et al (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Russell ST, Tisdale MJ (2009) Mechanism of attenuation by beta-hydroxy-beta-methylbutyrate of muscle protein degradation induced by lipopolysaccharide. Mol Cell Biochem 330:171–179

    Article  PubMed  CAS  Google Scholar 

  • Russell AP, Foletta VC, Snow RJ et al (2014) Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochim Biophys Acta 1840:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Sahin E, Colla S, Liesa M et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    Article  PubMed  CAS  Google Scholar 

  • Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Bba-Mol Cell Res 1813:1269–1278

    CAS  Google Scholar 

  • Scheffler TL, Scheffler JM, Park S et al (2014) Fiber hypertrophy and increased oxidative capacity can occur simultaneously in pig glycolytic skeletal muscle. Am J Physiol Cell Physiol 306:C354–C363

    Article  PubMed  CAS  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Slater GJ, Jenkins D (2000) Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports Med 30:105–116

    Article  PubMed  CAS  Google Scholar 

  • Smerdu V, Karschmizrachi I, Campione M et al (1994) Type-iix myosin heavy-chain transcripts are expressed in type iib fibers of human skeletal-muscle. Am J Physiol Cell Physiol 267:C1723–C1728

    CAS  Google Scholar 

  • Smith HJ, Wyke SM, Tisdale MJ (2004) Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by β-hydroxy-β-methylbutyrate. Cancer Res 64:8731–8735

    Article  PubMed  CAS  Google Scholar 

  • Smith HJ, Mukerji P, Tisdale MJ (2005) Attenuation of proteasome-induced proteolysis in skeletal muscle by β-hydroxy-β-methylbutyrate in cancer-induced muscle loss. Cancer Res 65:277–283

    Article  PubMed  CAS  Google Scholar 

  • Solerte SB, Fioravanti M, Locatelli E et al (2008) Improvement of blood glucose control and insulin sensitivity during a long-term (60 weeks) randomized study with amino acid dietary supplements in elderly subjects with type 2 diabetes mellitus. Am J Cardiol 101:82e–88e

    Article  PubMed  CAS  Google Scholar 

  • Stancliffe RA (2012) Role of beta-hydroxy-beta-methylbutyrate (HMB) in leucine stimulation of mitochondrial biogenesis and fatty acid oxidation, Master Thesis. The University of Tennessee, Knoxville

    Google Scholar 

  • Stefano GB, Kim C, Mantione K et al (2012) Targeting mitochondrial biogenesis for promoting health. Med Sci Monit 18:Sc1-Sc3

  • Sun X, Zemel MB (2009) Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab (Lond) 6:26

    Article  CAS  Google Scholar 

  • Sun YL, Wu ZL, Li W et al (2015) Dietary l-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 47:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Tekwe CD, Lei J, Yao K et al (2013) Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats. BioFactors 39:552–563

    Article  PubMed  CAS  Google Scholar 

  • Termin A, Staron RS, Pette D (1989) Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453–457

    Article  PubMed  CAS  Google Scholar 

  • Valerio A, D’Antona G, Nisoli E (2011) Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging-Us 3:464–478

    CAS  Google Scholar 

  • Vaughan RA, Garcia-Smith R, Gannon NP et al (2013) Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids 45:901–911

    Article  PubMed  CAS  Google Scholar 

  • Venhoff N, Lebrecht D, Pfeifer D et al (2012) Muscle-fiber transdifferentiation in an experimental model of respiratory chain myopathy. Arthritis Res Ther 14:1–11

    Article  CAS  Google Scholar 

  • Verdijk LB, Snijders T, Beelen M et al (2010) Characteristics of muscle fiber type are predictive of skeletal muscle mass and strength in elderly men. J Am Geriatr Soc 58:2069–2075

    Article  PubMed  Google Scholar 

  • Virbasius CA, Virbasius JV, Scarpulla RC (1993) NRF-1, an activator involved in nuclearmitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 7:2431–2445

    Article  PubMed  CAS  Google Scholar 

  • Vukovich MD, Stubbs NB, Bohlken RM (2001) Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J Nutr 131:2049–2052

    PubMed  CAS  Google Scholar 

  • Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450

    PubMed  CAS  Google Scholar 

  • Wang YX, Zhang CL, Yu RT et al (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2:e294

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weber TA, Reichert AS (2010) Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol 45:503–511

    Article  PubMed  CAS  Google Scholar 

  • Wenz T, Rossi SG, Rotundo RL et al (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 106:20405–20410

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wilson GJ, Wilson JM, Manninen AH (2008) Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab (Lond) 5:1

    Article  CAS  Google Scholar 

  • Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–482

    PubMed  CAS  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu ZD, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Naya FJ, Mckinsey TA et al (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19:1963–1973

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu H, Rothermel B, Kanatous S et al (2001) Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J 20:6414–6423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu H, Kanatous SB, Thurmond FA et al (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Okutsu M, Akhtar YN et al (2011) Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 110:264–274

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang Y, Wu ZL, Meininger CJ et al (2015) L-Leucine and NO-mediated cardiovascular function. Amino Acids 47:435–447

    Article  PubMed  CAS  Google Scholar 

  • Yi D, Hou YQ, Wang L et al (2015) L-Glutamine enhances enterocyte growth via activation of the mTOR signaling pathway independently of AMPK. Amino Acids 47:65–78

    Article  PubMed  CAS  Google Scholar 

  • Yin YL, Yao K, Liu ZJ et al (2010) Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Zanchi NE, Gerlinger-Romero F, Guimaraes-Ferreira L et al (2011) HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids 40:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Mott JL, Farrar P et al (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57:147–157

    Article  PubMed  CAS  Google Scholar 

  • Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:1523–1527

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the National Natural Science Foundation of China (31330075;31110103909, 31572416, and 31372319), Special Fund for Agro-scientific Research in the Public Interest (201403047), Innovation Research Team Development Program of MOE of China (IRT0945), The Chinese Academy of Science STS Project (KFJ-EW-STS-063), Key Projects in the National Science and Technology Pillar Program (2013BAD21B04), Hunan Key Project (2015NK1002), Changsha Lvye Biotechnology Limited Company Academician Expert Workstation, Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangdong Hinapharm Group Academician Workstation for Biological Feed and Feed Additives and Animal Intestinal Health, Hunan New Wellful Co. Ltd, Academician Workstation, Hubei Provincial Key Project for Scientific and Technical Innovation (2014ABA022), Hubei Hundred Talent program, and the Natural Science Foundation of Hubei Province (2013CFA097, 2013CFB325, 2012FFB04805, and 2011CDA131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Yao or Yulong Yin.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

X. He and Y. Duan contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Duan, Y., Yao, K. et al. β-Hydroxy-β-methylbutyrate, mitochondrial biogenesis, and skeletal muscle health. Amino Acids 48, 653–664 (2016). https://doi.org/10.1007/s00726-015-2126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2126-7

Keywords

Navigation