Skip to main content
Log in

Intimacy and a deadly feud: the interplay of autophagy and apoptosis mediated by amino acids

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Autophagy (i.e., “self-eating”) and apoptosis (i.e., type I programmed cell death) are essential and intimately involved in molecular, cellular, and whole-body homeostasis in humans and animals. Autophagy has been categorized as a mechanism of intracellular degradation, recycling, defense, and survival. To date, three types of autophagy have been identified: macroautophagy, microautophagy, and chaperone-mediated autophagy. Recent discoveries strongly suggest that macroautophagy also modulates type II programmed cell death under specific circumstances. Autophagy and apoptosis are fundamentally distinct processes, but are interconnected by common stress initiators and intermediate regulators. During the past two decades, the role of amino acid metabolism and signaling in the regulation of apoptosis and autophagy has been intensively studied. In this review, we summarize recent advances in our understanding of the molecular mechanisms that regulate both autophagy and apoptosis in the context of amino acid signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-inducing factor

AMBRA1:

Activating molecule in BECN1-regulated autophagy protein 1

AMPK:

AMP-activated protein kinase

Apaf-1:

Apoptotic protease-activating factor-1

ApoL6:

Apolipoprotein L6

Atg:

Autophagy-related gene

BAD:

Bcl-2-associated death protein

Bcl-2:

B cell lymphoma 2

Beclin 1:

Bcl-2 interacting protein 1

Bfl-1:

Bcl-2-related gene expressed in fetal liver

BH3:

Bcl-2-homology-3 domain

BH:

Bcl-2 homology

BID:

BH3 interacting-domain death agonist

Bif-1:

Bax-interacting factor-1

DAPK:

Death-associated protein kinase

DISC:

Death-inducing signaling complex

DRAM:

Damage-regulated autophagy modulator

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FADD:

FAS-associated death domain protein

FLICE:

FADD-like interleukin-1 β-converting enzyme

FIP200:

Focal adhesion kinase family-interacting protein of 200 kDa

hVps34:

Human vacuolar protein sorting-34

IAPs:

Inhibitors of apoptosis proteins

IGF-1:

Insulin-like growth factor-1

IRS:

Insulin receptor substrate

JNK:

c-Jun N-terminal kinase

LC3:

Microtubule-associated protein 1 light chain 3

MAPK:

Mitogen-activated protein kinase

MOMP:

Mitochondrial outer membrane permeabilization

mTOR:

Mammalian target of rapamycin

PCD:

Programmed cell death

PI3K:

Phosphoinositide 3-kinase

ROS:

Reactive oxygen species

PRAS40:

Proline-rich AKT substrate of 40 kDa

SMAC:

Second mitochondrial-derived activator of caspase

TIGAR:

TP53-inducible glycolysis and apoptosis regulator

TNF-α:

Tumor necrosis factor-α

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TSC1/2:

Tuberous sclerosis complex1/2

ULK1:

unc-51-like autophagy activating kinase 1

UVRAG:

Ultraviolet irradiation resistance-associated gene

SLC38A9:

Member 9 of the solute carrier family 38

References

  • Abdel Fattah E, Bhattacharya A, Herron A, Safdar Z, Eissa NT (2015) Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency. J Immunol 194:5407–5416

    Article  CAS  PubMed  Google Scholar 

  • Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aits S, Jaattela M (2013) Lysosomal cell death at a glance. J Cell Sci 126:1905–1912

    Article  CAS  PubMed  Google Scholar 

  • Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226

    Article  CAS  PubMed  Google Scholar 

  • Berthelet J, Dubrez L (2013) Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells 2:163–187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  Google Scholar 

  • Chand HS, Harris JF, Mebratu Y, Chen Y, Wright P, Randell SH, Hotchkiss J, Tesfaigzi Y (2012) Intracellular IGF-I induces Bcl-2 expression in airway epithelial cells. J. Immunol. 188(9):4581–4589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chand HS, Montano G, Huang X, Randell SC, Petersen H, Tesfaigz Y (2014) A variant in the proline-rich domain of p53 restricts the mucus secretory phenotype by regulating SPDEF and Bcl-2 expression. Nat. Commun. 27(5):5567

    Article  CAS  Google Scholar 

  • Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L et al (2014) The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen R, Zou Y, Mao D, Sun D, Gao G, Shi J et al (2014) The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J Cell Biol 206:173–182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Macian F (2012) Autophagy, nutrition and immunology. Mol Aspects Med 33:2–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  PubMed  Google Scholar 

  • Delbridge AR, Strasser A (2015) The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 22:1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Delgado ME, Dyck L, Laussmann MA, Rehm M (2014) Modulation of apoptosis sensitivity through the interplay with autophagic and proteasomal degradation pathways. Cell Death Dis 5:e1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  CAS  PubMed  Google Scholar 

  • Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Efeyan A, Schweitzer LD, Bilate AM, Chang S, Kirak O, Lamming DW, Sabatini DM (2014) RagA, but not RagB, is essential for embryonic development and adult mice. Dev Cell 29:321–329

    Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang X, Yu S, Eder A, Mao M, Bast RC Jr, Boyd D et al (1999) Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 18:6635–6640

    Article  CAS  PubMed  Google Scholar 

  • Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14:980–995

    Article  PubMed  Google Scholar 

  • Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11:109–124

    Article  CAS  PubMed  Google Scholar 

  • Fullgrabe J, Klionsky DJ, Joseph B (2014) The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol 15:65–74

    Article  PubMed  CAS  Google Scholar 

  • Gagarin D, Yang Z, Butler J, Wimmer M, Du B, Cahan P et al (2005) Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. J Mol Cell Cardiol 39:453–465

    Article  CAS  PubMed  Google Scholar 

  • Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16:321–333

    Article  PubMed  Google Scholar 

  • Gordy C, He YW (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3:17–27

    Article  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou Y, Yin Y, Wu G (2015) Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med (Maywood) 240(8):997–1007. doi:10.1177/1535370215587913

    Article  CAS  Google Scholar 

  • Hu CA, Donald SP, Yu J, Lin WW, Liu Z, Steel G et al (2007) Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 295:85–92

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB et al (2009) Dietary l-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K (2010) Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15:527–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813:558–563

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:407–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Guan KL (2011) Amino acid signaling in TOR activation. Annu Rev Biochem 80:1001–1032

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Lee MS (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10:322–337

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kuballa P, Nolte WM, Castoreno AB, Xavier RJ (2012) Autophagy and the immune system. Annu Rev Immunol 30:611–646

    Article  CAS  PubMed  Google Scholar 

  • Kulbe JR, Mulcahy Levy JM, Coultrap SJ, Thorburn A, Bayer KU (2014) Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 1542:12–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zheng Y, Chen W, Wang C, Liu X, He W et al (2007) Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis. Cancer Res 67:11176–11185

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Borchert GL, Surazynski A, Hu CA, Phang JM (2006) Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 25:5640–5647

    Article  CAS  PubMed  Google Scholar 

  • Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marazzi G, Rosanio S, Caminiti G, Dioguardi FS, Mercuro G (2008) The role of amino acids in the modulation of cardiac metabolism during ischemia and heart failure. Curr Pharm Des 14:2592–2604

    Article  CAS  PubMed  Google Scholar 

  • Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martina JA, Puertollano R (2013) Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 200:475–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E (2014) Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell 55:916–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maxwell SA, Rivera A (2003) Proline oxidase induces apoptosis in tumor cells, and its expression is frequently absent or reduced in renal carcinomas. J Biol Chem 278:9784–9789

    Article  CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ et al (2010) Beneficial effects of l-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    Article  CAS  PubMed  Google Scholar 

  • McKnight JR, Satterfield MC, Li X, Gao H, Wang J, Li D et al (2011) Obesity in pregnancy: problems and potential solutions. Front Biosci (Elite Ed) 3:442–452

    Article  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  • Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    Article  CAS  PubMed  Google Scholar 

  • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noda NN, Inagaki F (2015) Mechanisms of Autophagy. Annu Rev Biophys 44:101–122

    Article  CAS  PubMed  Google Scholar 

  • Oberle C, Huai J, Reinheckel T, Tacke M, Rassner M, Ekert PG et al (2010) Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ 17:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Otera H, Mihara K (2012) Mitochondrial dynamics: functional link with apoptosis. Int J Cell Biol 2012:821676

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ott M, Norberg E, Zhivotovsky B, Orrenius S (2009) Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death Differ 16:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Pandhare J, Donald SP, Cooper SK, Phang JM (2009) Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 107:759–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH (1998) Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 4:222–227

    Article  CAS  PubMed  Google Scholar 

  • Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    Article  CAS  PubMed  Google Scholar 

  • Puertollano R (2014) mTOR and lysosome regulation. F1000Prime Rep 6: 52

  • Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK et al (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O et al (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330:1390–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    Article  CAS  PubMed  Google Scholar 

  • Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A et al (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, McMeekin JD, Thomson DJ (2002) Expression of Bcl-x, Bcl-2, Bax, and Bak in endarterectomy and atherectomy specimens. J Pathol 196:335–342

    Article  CAS  PubMed  Google Scholar 

  • Schmid D, Munz C (2007) Immune surveillance via self digestion. Autophagy 3:133–135

    Article  CAS  PubMed  Google Scholar 

  • Schmitz I, Kirchhoff S, Krammer PH (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32:1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    Article  CAS  PubMed  Google Scholar 

  • She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shpilka T, Mizushima N, Elazar Z (2012) Ubiquitin-like proteins and autophagy at a glance. J Cell Sci 125:2343–2348

    Article  CAS  PubMed  Google Scholar 

  • Steele S, Brunton J, Kawula T (2015) The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 5:51

    Article  PubMed Central  PubMed  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X et al (2011) Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    Article  CAS  PubMed  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88

    Article  CAS  PubMed  Google Scholar 

  • Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  • Vaux DL (2011) Apoptogenic factors released from mitochondria. Biochim Biophys Acta 1813:546–550

    Article  CAS  PubMed  Google Scholar 

  • Verhagen AM, Coulson EJ, Vaux DL (2001) Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2:REVIEWS3009

  • Walsh CM, Edinger AL (2010) The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol Rev 236:95–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME et al (2015) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ (2007) Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 282:28960-28970

    Article  CAS  PubMed  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willimott S, Wagner SD (2010) Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 38:1571–1575

    Article  CAS  PubMed  Google Scholar 

  • Willis S, Day CL, Hinds MG, Huang DC (2003) The Bcl-2-regulated apoptotic pathway. J Cell Sci 116:4053–4056

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA et al (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z, Gagarin D, Ramezani A, Hawley RG, McCaffrey TA (2007) Resistance to fas-induced apoptosis in cells from human atherosclerotic lesions: elevated Bcl-XL inhibits apoptosis and caspase activation. J Vasc Res 44:483–494

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Wilson NS, Ashkenazi A (2010) Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Curr Opin Cell Biol 22:837–844

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al (2004a) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Lenardo MJ, Baehrecke EH (2004b) Autophagy and caspases: a new cell death program. Cell Cycle 3:1124–1126

    CAS  PubMed  Google Scholar 

  • Yu L, Strandberg L, Lenardo MJ (2008) The selectivity of autophagy and its role in cell death and survival. Autophagy 4:567–573

    Article  PubMed  Google Scholar 

  • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan XM, Li W, Dalen H, Lotem J, Kama R, Sachs L et al (2002) Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A 99:6286–6291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan S, Topf M, Reubold TF, Eschenburg S, Akey CW (2013) Changes in Apaf-1 conformation that drive apoptosome assembly. Biochemistry 52:2319–2327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M et al (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Haddad GG, Xia Y (2000) delta-, but not mu- and kappa-, opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Res 885:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhaorigetu S, Yang Z, Toma I, McCaffrey TA, Hu CA (2011) Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. J Biol Chem 286:27389–27398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15:1481–1486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health (5RO1CA106644 to CAAH), the National Key Basic Research Program of China (2013CB127302 to Z.W. and G.W.), and the Natural Science Foundation of China (31172217, 31272450, and 31272451 to Z.W. and G.W.), the Chinese Universities Scientific Fund (2013RC002), the Program for New Century Excellent Talents in University (NCET-12-0522), and the Program for Beijing Municipal Excellent Talents, the Agriculture and Food Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture (No. 2014-67015-21770), and Texas A&M AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlong Wu or Chien-An A. Hu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Zhenlong Wu and Chien-An A. Hu have equally contributed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Hu, CA.A., Wu, G. et al. Intimacy and a deadly feud: the interplay of autophagy and apoptosis mediated by amino acids. Amino Acids 47, 2089–2099 (2015). https://doi.org/10.1007/s00726-015-2084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2084-0

Keywords

Navigation