Skip to main content
Log in

Statistical survey of the buried waters in the Protein Data Bank

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The structures of buried water molecules were studied in an ensemble of high-quality and non-redundant protein crystal structures. Buried water molecules were clustered and classified in lake-like clusters, which are completely isolated from the bulk solvent, and bay-like clusters, which are in contact with the bulk solvent through a surface water molecule. Buried water molecules are extremely common: lake-like clusters are found in 89 % of the protein crystal structures and bay-like clusters in 93 %. Clusters with only one water molecule are much more common than larger clusters. Both cluster types incline to be surrounded by loop residues, and to a minor extent by residues in extended secondary structure. Helical residues on the contrary do not tend to surround clusters of buried water molecules. One buried water molecule is found every 30–50 amino acid residues, depending on the secondary structures that are more abundant in the protein. Both main- and side-chain atoms are in contact with buried waters; they form four hydrogen bonds with the first water and 1–1.5 additional hydrogen bond for each additional water in the cluster. Consequently, buried water molecules appear to be firmly packed and rigid like the protein atoms. In this regard, it is remarkable to observe that prolines often surround water molecules buried in the protein interior. Interestingly, clusters of buried water molecules tend to be just beneath the protein surface. Moreover, water molecules tend to form a one-dimensional wire rather than more compact arrangements. This agrees with recent evidence of the mechanisms of solvent exchange between internal cavities and bulk solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernstein FC et al (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  • Carugo O (2008) Amino acid composition and protein dimension. Protein Sci 17:2187–2191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carugo O, Argos P (1997) Correlation between side chain mobility and conformation in protein structures. Prot Eng 10:777–787

    Article  CAS  Google Scholar 

  • Carugo O, Argos P (1998) Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors. Proteins 31:201–213

    Article  PubMed  CAS  Google Scholar 

  • Collins G, Quillins ML, Matthews BW, Grunner SM (2005) Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc Natl Acad Sci USA 102:16668–16671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connolly ML (1985a) Atomic size packing defects in proteins. Int J Pept Protein Res 28:360–363

    Article  Google Scholar 

  • Connolly ML (1985b) Computation of molecular volume. J Am Chem Soc 107:1118–1124

    Article  CAS  Google Scholar 

  • Denisov VP, Halle B (1995) Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J Mol Biol 245:682–697

    Article  PubMed  CAS  Google Scholar 

  • Denisov VP, Halle B, Peters J, Hoerlein HD (1995) Residence times of the buried water molecules in bovine pancreatic trypsin inhibitor and its G36S mutant. Biochemistry 34:9046–9051

    Article  PubMed  CAS  Google Scholar 

  • Denisov VP, Peters J, Hörlein HD, Halle B (1996) Using buried water molecules to explore the energy landscape of proteins. Nat Struct Biol 3:505–509

    Article  PubMed  CAS  Google Scholar 

  • Denisov VP, Peters J, Hoerlein H-D, Halle B (2004) Accelerated exchange of a buried water molecule in selectively disulfide-reduced bovine pancreatic trypsin inhibitor. Biochemistry 43:12020–12027

    Article  PubMed  CAS  Google Scholar 

  • Fischer S, Smith JC, Verma C (2001) Dissecting the vibrational entropy change on protein/ligand binding: burial of a water molecule in bovine pancreatic trypsin inhibitor. J Phys Chem B 105:8050–8055

    Article  CAS  Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579

    Article  PubMed  CAS  Google Scholar 

  • Griffin S, Vitello A, Wittung-Stafshede P (2002) Buried water molecules contribute to cytochrome f stability. Arch Biochem Biophys 404:335–337

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SE, Thornton JM (1993) NACCESS. University College London, Department of Biochemistry and Molecular Biology, London, Computer Program

    Google Scholar 

  • Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J Mol Biol 296:713–735

    Article  PubMed  CAS  Google Scholar 

  • Laage D, Hynes JT (2006) A molecular jump mechanism of water reorientation Science 311:832–835

    PubMed  CAS  Google Scholar 

  • Lauble H, Kennedy MC, Beinert H, Stout CD (1992) Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry 31:2735–2748

    Article  PubMed  CAS  Google Scholar 

  • Likic VA, Juranic N, Macura S, Prendergast FG (2000) A “structural” water molecule in the family of fatty acid binding proteins. Prot Sci 9:497–504

    Article  CAS  Google Scholar 

  • Loris R et al (1999) Conserved water molecules in a large family of microbial ribonucleases. Proteins 36(36):117–134

    Article  PubMed  CAS  Google Scholar 

  • McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Park S, Saven JG (2005) Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins 60:450–463

    Article  PubMed  CAS  Google Scholar 

  • Pavlov MY, Fedorov BA (1983) Improved techniques for calculating X-ray scattering intensity of biopolymers in solution: evaluation of the form, volume, and surface of a particle. Biopolymers 22:1517–1522

    Article  Google Scholar 

  • Persson E, Halle B (2008) Nanosecond to microsecond protein dynamics probed by magnetic relaxation dispersion of buried water molecules. J Am Chem Soc 130:1774–1787

    Article  PubMed  CAS  Google Scholar 

  • Persson F, Halle B (2013) Transient Access to the Protein Interior: simulation versus NMR. J Am Chem Soc 135:8735–8748

    Article  PubMed  CAS  Google Scholar 

  • Pintar A, Carugo O, Pongor S (2003a) Atom depth as a descriptor of the protein interior. Biophys J 84:2553–2561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pintar A, Carugo O, Pongor S (2003b) Atom depth in protein structure and function. Trends Biochem Sci 28:593–597

    Article  PubMed  CAS  Google Scholar 

  • Pintar A, Carugo O, Pongor S (2003c) DPX: for the analysis of the protein core. Bioinformatics 19:313–314

    Article  PubMed  CAS  Google Scholar 

  • Rashin AA, Iofin M, Honig B (1986) Internal cavities and buried waters in globular proteins. Biochemistry 25:3619–3625

    Article  PubMed  CAS  Google Scholar 

  • Renthal R (2008) Buried water molecules in helical transmembrane proteins. Prot Sci 17:293–298

    Article  CAS  Google Scholar 

  • Roux B, Nina M, Pomès R, Smith JC (1996) Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study. Biophys J 71:670–681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szep S, Park S, Boder ET, Van Duyne GD, Saven JG (2009) Structural coupling between FKBP12 and buried water. Proteins 74:603–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takano K, Yamagata Y, Yutano K (2003) Buried water molecules contribute to the conformational stability of a protein. Prot Eng 16(16):5–9

    Article  CAS  Google Scholar 

  • Teze S, Hendrickx J, Dion M, Tellier C, Woods VLJ, Tran V, Sanejouand Y-H (2013) Conserved water molecules in family 1 glycosidases: a DXMS and molecular dynamics study. Biochemistry 52:5900–5910

    Article  PubMed  CAS  Google Scholar 

  • Vaitheeswaran S, Yin H, Rasaiah JC, Hummer G (2004) Water clusters in nonpolar cavities. Proc Natl Acad Sci USA 101:17002–17005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vlahovicek K, Pintar A, Parthasarathi L, Carugo O, Pongor S (2005) CX, DPX and PRIDE: WWW servers for the analysis and comparison of protein 3D structures. Nucleic Acids Res 33:W252–W254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vrielink A, Lloyd LF, Blow DM (1991) Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J Mol Biol 219:533–554

    Article  PubMed  CAS  Google Scholar 

  • Wade RC, Mazor MH, McCammon JA, Quiocho FA (1990) Hydration of cavities in proteins: a molecular dynamics approach. J Am Chem Soc 112:7057–7059

    Article  CAS  Google Scholar 

  • Williams MA, Goodfellow JM, Thornton JM (1994) Buried waters and internal cavities in monomeric proteins. Prot Sci 3:1224–1235

    Article  CAS  Google Scholar 

  • Wuethrich K, Otting G, Liepinsh E (1992) Protein hydration in aqueous solution. Faraday Discuss 93:35–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliviero Carugo.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: S. C. E. Tosatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carugo, O. Statistical survey of the buried waters in the Protein Data Bank. Amino Acids 48, 193–202 (2016). https://doi.org/10.1007/s00726-015-2064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2064-4

Keywords

Navigation