Skip to main content
Log in

Arginine methylation in yeast proteins during stationary-phase growth and heat shock

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Arginine methyltransferases (RMTs) catalyze the methylation of arginine residues on proteins. We examined the effects of log-phase growth, stationary-phase growth, and heat shock on the formation of methylarginines on yeast proteins to determine if the conditions favor a particular type of methylation. Utilizing linear ion trap mass spectrometry, we identify methylarginines in wild-type and RMT deletion yeast strains using secondary product ion scans (MS3), and quantify the methylarginines using multiple reaction monitoring (MRM). Employing MS3 and isotopic incorporation, we demonstrate for the first time that Nη1, Nη2-dimethylarginine (sDMA) is present on yeast proteins, and make a detailed structural determination of the fragment ions from the spectra. Nη-monomethylarginine (ηMMA), Nδ-monomethylarginine (δMMA), Nη1, Nη1-dimethylarginine (aDMA), and sDMA were detected in RMT deletion yeast using MS3 and MRM with and without isotopic incorporation, suggesting that additional RMT enzymes remain to be discovered in yeast. The concentrations of ηMMA and δMMA decreased by half during heat shock and stationary phase compared to log-phase growth of wild-type yeast, whereas sDMA increased by as much as sevenfold and aDMA decreased by 11-fold. Therefore, upon entering stressful conditions like heat shock or stationary-phase growth, there is a net increase in sDMA and decreases in aDMA, ηMMA, and δMMA on yeast proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CE:

Collision energy

CPS:

Counts per second

CXP:

Collision cell exit potential

DP:

Declustering potential

MRM:

Multiple reaction monitoring

MRM3 :

Multiple reaction monitoring cubed

MS2 :

Primary product ion spectrum

MS3 :

Secondary product ion spectrum

MS:

Mass spectrometry

UHPLC:

Ultra-high performance liquid chromatography

YEPD:

Yeast extract peptone dextrose

References

  • Brame CJ, Moran MF, McBroom-Cerajewski LD (2004) A mass spectrometry based method for distinguishing between symmetrically and asymmetrically dimethylated arginine residues. Rapid Commun Mass Spectrom 18:877–881

    Article  CAS  PubMed  Google Scholar 

  • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41:763–769

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Vemulapalli V, Patananan AN, Huang GL, Di Lorenzo A, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT (2013) Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311

    Article  PubMed Central  PubMed  Google Scholar 

  • Erce MA, Abeygunawardena D, Low JK, Hart-Smith G, Wilkins MR (2013) Interactions affected by arginine methylation in the yeast protein-protein interaction network. Mol Cell Proteomics 12:3184–3198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gary JD, Lin WJ, Yang MC, Herschman HR, Clarke S (1996) The predominant protein-arginine methyltransferase from Saccharomyces cerevisiae. J Biol Chem 271:12585–12594

    Article  CAS  PubMed  Google Scholar 

  • Gehrig PM, Hunziker PE, Zahariev S, Pongor S (2004) Fragmentation pathways of N(G)-methylated and unmodified arginine residues in peptides studied by ESI-MS/MS and MALDI-MS. J Am Soc Mass Spectrom 15:142–149

    Article  CAS  PubMed  Google Scholar 

  • Hartman MC, Josephson K, Lin CW, Szostak JW (2007) An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One 2:e972

    Article  PubMed Central  PubMed  Google Scholar 

  • Henry MF, Silver PA (1996) A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins. Mol Cell Biol 16:3668–3678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herman PK (2002) Stationary phase in yeast. Curr Opin Microbiol 5:602–607

    Article  CAS  PubMed  Google Scholar 

  • Jackson CA, Yadav N, Min S, Li J, Milliman EJ, Qu J, Chen YC, Yu MC (2012) Proteomic analysis of interactors for yeast protein arginine methyltransferase Hmt1 reveals novel substrate and insights into additional biological roles. Proteomics 12:3304–3314

    Article  CAS  PubMed  Google Scholar 

  • Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421:253–261

    Article  CAS  PubMed  Google Scholar 

  • Lakowski TM, Hart TP, Ahern CA, Martin NI, Frankel A (2010a) Neta-substituted arginyl peptide inhibitors of protein arginine N-methyltransferases. ACS Chem Biol 5:1053–1063

  • Lakowski TM, Zurita-Lopez C, Clarke SG, Frankel A (2010b) Approaches to measuring the activities of protein arginine N-methyltransferases. Anal Biochem 397:1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakowski TM, Szeitz A, Pak ML, Thomas D, Vhuiyan MI, Kotthaus J, Clement B, Frankel A (2013) MS3 fragmentation patterns of monomethylarginine species and the quantification of all methylarginine species in yeast using MRM3. J Proteomics 80C:43–54

    Article  Google Scholar 

  • Lee JH, Cook JR, Pollack BP, Kinzy TG, Norris D, Pestka S (2000) Hsl7p, the yeast homologue of human JBP1, is a protein methyltransferase. Biochem Biophys Res Commun 274:105–111

    Article  CAS  PubMed  Google Scholar 

  • Lipson RS, Webb KJ, Clarke SG (2010) Two novel methyltransferases acting upon eukaryotic elongation factor 1A in Saccharomyces cerevisiae. Arch Biochem Biophys 500:137–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Low JK, Wilkins MR (2012) Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 279:4423–4443

    Article  CAS  PubMed  Google Scholar 

  • Messier V, Zenklusen D, Michnick SW (2013) A nutrient-responsive pathway that determines M phase timing through control of B-cyclin mRNA stability. Cell 153:1080–1093

    Article  CAS  PubMed  Google Scholar 

  • Miranda TB, Sayegh J, Frankel A, Katz JE, Miranda M, Clarke S (2006) Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of omega-N(G)-monomethylarginine in calf thymus histone H2A. Biochem J 395:563–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274:814–824

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1:119–126

    Article  CAS  PubMed  Google Scholar 

  • Pak ML, Lakowski TM, Thomas D, Vhuiyan MI, Husecken K, Frankel A (2011) A protein arginine N-methyltransferase 1 (PRMT1) and 2 heteromeric interaction increases PRMT1 enzymatic activity. Biochemistry 50:8226–8240

    Article  CAS  PubMed  Google Scholar 

  • Pang CN, Gasteiger E, Wilkins MR (2010) Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genom 11:92

    Article  Google Scholar 

  • Parrini MC, Bernardi A, Parmeggiani A (1996) Determinants of Ras proteins specifying the sensitivity to yeast Ira2p and human p120-GAP. EMBO J 15:1107–1111

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rappsilber J, Friesen WJ, Paushkin S, Dreyfuss G, Mann M (2003) Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal Chem 75:3107–3114

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MJ, Reinders A, Boller T, Wiemken A, De Virgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25:571–581

    Article  CAS  PubMed  Google Scholar 

  • Sayegh J, Clarke SG (2008) Hsl7 is a substrate-specific type II protein arginine methyltransferase in yeast. Biochem Biophys Res Commun 372:811–815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schade D, Topker-Lehmann K, Kotthaus J, Clement B (2008) Synthetic approaches to N(delta)-methylated l-arginine, N(omega)-hydroxy-l-arginine, L-citrulline, and N(delta)-cyano-L-ornithine. J Org Chem 73:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Shek PY, Zhao J, Ke Y, Siu KW, Hopkinson AC (2006) Fragmentations of protonated arginine, lysine and their methylated derivatives: concomitant losses of carbon monoxide or carbon dioxide and an amine. J Phys Chem A 110:8282–8296

    Article  CAS  PubMed  Google Scholar 

  • Teerlink T (2007) HPLC analysis of ADMA and other methylated l-arginine analogs in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 851:21–29

    Article  CAS  PubMed  Google Scholar 

  • Teerlink T, Nijveldt RJ, de Jong S, van Leeuwen PA (2002) Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem 303:131–137

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Koopmans T, Lakowski TM, Kreinin H, Vhuiyan MI, Sedlock SA, Bui JM, Martin NI, Frankel A (2014) Protein arginine N-methyltransferase substrate preferences for different neta-substituted arginyl peptides. ChemBioChem 15:1607–1613

    Article  CAS  PubMed  Google Scholar 

  • Treco DA, Reynolds A, Lundblad V (2001) Growth and manipulation of yeast. Curr Protoc Protein Sci Appendix 4: A.4L.1–A.4L.6

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE (2012) Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry 51:5091–5104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zobel-Thropp P, Gary JD, Clarke S (1998) Delta-N-methylarginine is a novel posttranslational modification of arginine residues in yeast proteins. J Biol Chem 273:29283–29286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the BC Proteomics Network Small Projects Health Research Grant (to A.F.), The University of British Columbia Doctoral Fellowships (to D.T. and M.I.V.), The Dr. Paul H.T. Thorlakson Foundation Fund and The Manitoba Medical Service Foundation Grant, University Research Grants Program (University of Manitoba), and the Natural Sciences and Engineering Research Council (NSERC) of Canada RGPIN-2015-06543 (to T.M.L). This manuscript is dedicated to the memory of Dr. Romuald Lakowski, who was a loving father, a mentor, and a dedicated scientist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ted M. Lakowski or Adam Frankel.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Handling Editor: K. L. Bennett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakowski, T.M., Pak, M.L., Szeitz, A. et al. Arginine methylation in yeast proteins during stationary-phase growth and heat shock. Amino Acids 47, 2561–2571 (2015). https://doi.org/10.1007/s00726-015-2047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2047-5

Keywords

Navigation