Advertisement

Amino Acids

, Volume 47, Issue 9, pp 1751–1762 | Cite as

Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature

  • A. SchluneEmail author
  • S. vom Dahl
  • D. Häussinger
  • R. Ensenauer
  • E. Mayatepek
Review Article
Part of the following topical collections:
  1. Homoarginine, Arginine and Relatives

Abstract

Hyperargininemia is caused by deficiency of arginase 1, which catalyzes the hydrolysis of l-arginine to urea as the final enzyme in the urea cycle. In contrast to other urea cycle defects, arginase 1 deficiency usually does not cause catastrophic neonatal hyperammonemia but rather presents with progressive neurological symptoms including seizures and spastic paraplegia in the first years of life and hepatic pathology, such as neonatal cholestasis, acute liver failure, or liver fibrosis. Some patients have developed hepatocellular carcinoma. A usually mild or moderate hyperammonemia may occur at any age. The pathogenesis of arginase I deficiency is yet not fully understood. However, the accumulation of l-arginine and the resulting abnormalities in the metabolism of guanidine compounds and nitric oxide have been proposed to play a major pathophysiological role. This article provides an update on the first patients ever described, gives an overview of the distinct clinical characteristics, biochemical as well as genetical background and discusses treatment options.

Keywords

Urea cycle Arginase deficiency Hyperargininemia Guanidino compounds Oxidative stress 

Abbreviations

AGAT

l-Arginine-glycine amidinotransferase

ASL

Argininosuccinate lyase

ASS

Argininosuccinate synthase

CSF

Cerebrospinal fluid

CPSI

Carbamoyl phosphate synthase I

GAA

Guanidinoacetate

GAMT

Guanidinoacetatemethyltransferase

GC

Guanidino compounds

NAGS

N-Acetyl-glutamate synthase

NO

Nitric oxide

NOS

Nitric oxide synthase

MRI

Magnetic resonance imaging

MRS

Magnetic resonance spectroscopy

ORNT1

Mitochondrial ornithine transporter

OAT

Ornithine aminotransferase

OTC

Ornithine transcarbamylase

UCD

Urea cycle disorder

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Amayreh W, Meyer U, Das AM (2014) Treatment of arginase deficiency revisited: guanidinoacetate as a therapeutic target and biomarker for therapeutic monitoring. Dev Med Child Neurol 56(10):1021–1024. doi: 10.1111/dmcn.12488 PubMedCrossRefGoogle Scholar
  2. Ash DE, Scolnick LR, Kanyo ZF, Vockley JG, Cederbaum SD, Christianson DW (1998) Molecular basis of hyperargininemia: structure-function consequences of mutations in human liver arginase. Mol Genet Metab 64(4):243–249. doi: 10.1006/mgme.1998.2677 PubMedCrossRefGoogle Scholar
  3. Bachmann C, Colombo JP (1980) Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic acidurias. Eur J Pediatr 134(2):109–113PubMedCrossRefGoogle Scholar
  4. Bachmann C, Colombo JP (1982) Orotic acid in urine and hyperammonemia. Adv Exp Med Biol 153:313–319PubMedCrossRefGoogle Scholar
  5. Bachmann C, Krahenbuhl S, Colombo JP (1982) Purification and properties of acetyl-CoA: l-glutamate N-acetyltransferase from human liver. Biochem J 205(1):123–127PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baranello G, Alfei E, Martinelli D, Rizzetto M, Cazzaniga F, Dionisi-Vici C, Gellera C, Castellotti B (2014) Hyperargininemia: 7-month follow-up under sodium benzoate therapy in an Italian child presenting progressive spastic paraparesis, cognitive decline, and novel mutation in ARG1 gene. Pediatr Neurol 51(3):430–433. doi: 10.1016/j.pediatrneurol.2014.05.029 PubMedCrossRefGoogle Scholar
  7. Batshaw ML, MacArthur RB, Tuchman M (2001) Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatrics 138 (1 Suppl):S46–S54; discussion S54–S45Google Scholar
  8. Batshaw ML, Tuchman M, Summar M, Seminara J, Members of the Urea Cycle Disorders C (2014) A longitudinal study of urea cycle disorders. Mol Genet Metab 113(1–2):127–130. doi: 10.1016/j.ymgme.2014.08.001 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bernard A, Meier C, Lopez N, May J, Chang P, Boulanger B, Kearney P (2007) Packed red blood cell-associated arginine depletion is mediated by arginase. J Trauma 63 (5):1108–1112; discussion 1112. doi: 10.1097/TA.0b013e31814b2b17
  10. Blaser S, Feigenbaum A (2004) A neuroimaging approach to inborn errors of metabolism. Neuroimag Clin North Am 14 (2):307–329, ix. doi: 10.1016/j.nic.2004.03.013
  11. Boles RG, Stone ML (2006) A patient with arginase deficiency and episodic hyperammonemia successfully treated with menses cessation. Mol Genet Metab 89(4):390–391. doi: 10.1016/j.ymgme.2006.07.012 PubMedCrossRefGoogle Scholar
  12. Bonham JR, Guthrie P, Downing M, Allen JC, Tanner MS, Sharrard M, Rittey C, Land JM, Fensom A, O’Neill D, Duley JA, Fairbanks LD (1999) The allopurinol load test lacks specificity for primary urea cycle defects but may indicate unrecognized mitochondrial disease. J Inherit Metab Dis 22(2):174–184PubMedCrossRefGoogle Scholar
  13. Braga AC, Vilarinho L, Ferreira E, Rocha H (1997) Hyperargininemia presenting as persistent neonatal jaundice and hepatic cirrhosis. J Pediatr Gastroenterol Nutr 24(2):218–221PubMedCrossRefGoogle Scholar
  14. Brockstedt M, Smit LM, de Grauw AJ, van der Klei-van Moorsel JM, Jakobs C (1990) A new case of hyperargininaemia: neurological and biochemical findings prior to and during dietary treatment. Eur J Pediatr 149(5):341–343PubMedCrossRefGoogle Scholar
  15. Brosnan ME, Brosnan JT (2007) Orotic acid excretion and arginine metabolism. J Nutr 137(6 Suppl 2):1656S–1661SPubMedGoogle Scholar
  16. Brusilow SWHA (2001) Urea cycle enzymes. In: Scriver CRBA, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1909–1963Google Scholar
  17. Buchmann I, Milakofsky L, Harris N, Hofford JM, Vogel WH (1996) Effect of arginine administration on plasma and brain levels of arginine and various related amino compounds in the rat. Pharmacology 53(3):133–142PubMedCrossRefGoogle Scholar
  18. Caldovic L, Ah Mew N, Shi D, Morizono H, Yudkoff M, Tuchman M (2010) N-acetylglutamate synthase: structure, function and defects. Mol Genet Metab 100(Suppl 1):S13–S19. doi: 10.1016/j.ymgme.2010.02.018 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA, Valle D (1999) Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22(2):151–158. doi: 10.1038/9658 PubMedCrossRefGoogle Scholar
  20. Cardoso ML, Martins E, Vasconcelos R, Vilarinho L, Rocha J (1999) Identification of a novel R21X mutation in the liver-type arginase gene (ARG1) in four Portuguese patients with argininemia. Hum Mutat 14(4):355–356. doi: 10.1002/(SICI)1098-1004(199910)14:4<355:AID-HUMU20>3.0.CO;2-I PubMedCrossRefGoogle Scholar
  21. Carvalho DR, Brand GD, Brum JM, Takata RI, Speck-Martins CE, Pratesi R (2012a) Analysis of novel ARG1 mutations causing hyperargininemia and correlation with arginase I activity in erythrocytes. Gene 509(1):124–130. doi: 10.1016/j.gene.2012.08.003 PubMedCrossRefGoogle Scholar
  22. Carvalho DR, Brum JM, Speck-Martins CE, Ventura FD, Navarro MM, Coelho KE, Portugal D, Pratesi R (2012b) Clinical features and neurologic progression of hyperargininemia. Pediatr Neurol 46(6):369–374. doi: 10.1016/j.pediatrneurol.2012.03.016 PubMedCrossRefGoogle Scholar
  23. Cederbaum SD, Shaw KN, Valente M (1977) Hyperargininemia. J Pediatr 90(4):569–573PubMedCrossRefGoogle Scholar
  24. Cederbaum SD, Shaw KN, Spector EB, Verity MA, Snodgrass PJ, Sugarman GI (1979) Hyperargininemia with arginase deficiency. Pediatr Res 13(7):827–833. doi: 10.1203/00006450-197907000-00007 PubMedCrossRefGoogle Scholar
  25. Cederbaum SD, Moedjono SJ, Shaw KN, Carter M, Naylor E, Walzer M (1982) Treatment of hyperargininaemia due to arginase deficiency with a chemically defined diet. J Inherit Metab Dis 5(2):95–99PubMedCrossRefGoogle Scholar
  26. Cederbaum SD, Yu H, Grody WW, Kern RM, Yoo P, Iyer RK (2004) Arginases I and II: do their functions overlap? Mol Genet Metab 81(Suppl 1):S38–S44. doi: 10.1016/j.ymgme.2003.10.012 PubMedCrossRefGoogle Scholar
  27. Chace DH, Kalas TA, Naylor EW (2002) The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genom Hum Genet 3:17–45. doi: 10.1146/annurev.genom.3.022502.103213 CrossRefGoogle Scholar
  28. Choi CG, Yoo HW (2001) Localized proton MR spectroscopy in infants with urea cycle defect. AJNR Am J Neuroradiol 22(5):834–837PubMedGoogle Scholar
  29. Christmann D, Hirsch E, Mutschler V, Collard M, Marescaux C, Colombo JP (1990) Late diagnosis of congenital argininemia during administration of sodium valproate. Revue Neurologique 146(12):764–766PubMedGoogle Scholar
  30. Chrzanowska A, Gajewska B, Baranczyk-Kuzma A (2009) Arginase isoenzymes in human cirrhotic liver. Acta Biochim Pol 56(3):465–469PubMedGoogle Scholar
  31. Cohen YH, Bargal R, Zeigler M, Markus-Eidlitz T, Zuri V, Zeharia A (2012) Hyperargininemia: a family with a novel mutation in an unexpected site. JIMD Rep 5:83–88. doi: 10.1007/8904_2011_101 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Cowley DM, Bowling FG, McGill JJ, van Dongen J, Morris D (1998) Adult-onset arginase deficiency. J Inherit Metab Dis 21(6):677–678PubMedCrossRefGoogle Scholar
  33. Crombez EA, Cederbaum SD (2005) Hyperargininemia due to liver arginase deficiency. Mol Genet Metab 84(3):243–251. doi: 10.1016/j.ymgme.2004.11.004 PubMedCrossRefGoogle Scholar
  34. da Silva CG, Parolo E, Streck EL, Wajner M, Wannmacher CM, Wyse AT (1999) In vitro inhibition of Na + , K(+)-ATPase activity from rat cerebral cortex by guanidino compounds accumulating in hyperargininemia. Brain Res 838(1–2):78–84PubMedCrossRefGoogle Scholar
  35. De Deyn PP, Marescau B, Macdonald RL (1991) Guanidino compounds that are increased in hyperargininemia inhibit GABA and glycine responses on mouse neurons in cell culture. Epilepsy Res 8(2):134–141PubMedCrossRefGoogle Scholar
  36. De Deyn PP, Qureshi IA et al (1997) Hyperargininemia: a treatable inborn error of metabolism? In: De Deyn PP, Quresho IA, Mori A (eds) Guanidino compounds in biology and medicine, vol 2. John Libbey & Company Ltd., London, pp 53–69Google Scholar
  37. Deignan JL, De Deyn PP, Cederbaum SD, Fuchshuber A, Roth B, Gsell W, Marescau B (2010) Guanidino compound levels in blood, cerebrospinal fluid, and post-mortem brain material of patients with argininemia. Mol Genet Metab 100(Suppl 1):S31–S36. doi: 10.1016/j.ymgme.2010.01.012 PubMedCrossRefGoogle Scholar
  38. Delwing D, Tagliari B, Streck EL, Wannamacher CM, Wajner M, Wyse AT (2003) Reduction of energy metabolism in rat hippocampus by arginine administration. Brain Res 983(1–2):58–63PubMedCrossRefGoogle Scholar
  39. Delwing D, Delwing D, Bavaresco CS, Wyse AT (2008) Protective effect of nitric oxide synthase inhibition or antioxidants on brain oxidative damage caused by intracerebroventricular arginine administration. Brain Res 1193:120–127. doi: 10.1016/j.brainres.2007.11.052 PubMedCrossRefGoogle Scholar
  40. Delwing-de Lima D, Wollinger LF, Casagrande AC, Delwing F, da Cruz JG, Wyse AT, Delwing-Dal Magro D (2010) Guanidino compounds inhibit acetylcholinesterase and butyrylcholinesterase activities: effect neuroprotector of vitamins E plus C. Int J Dev Neurosci Offi J Int Soc Dev Neurosci 28(6):465–473. doi: 10.1016/j.ijdevneu.2010.06.008 CrossRefGoogle Scholar
  41. dos Reis EA, de Oliveira LS, Lamers ML, Netto CA, Wyse AT (2002) Arginine administration inhibits hippocampal Na(+), K(+)-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res 951(2):151–157PubMedCrossRefGoogle Scholar
  42. Edwards RL, Moseley K, Watanabe Y, Wong LJ, Ottina J, Yano S (2009) Long-term neurodevelopmental effects of early detection and treatment in a 6-year-old patient with argininaemia diagnosed by newborn screening. J Inherit Metab Dis 32(Suppl 1):S197–S200. doi: 10.1007/s10545-009-1148-2 PubMedCrossRefGoogle Scholar
  43. Grioni D, Furlan F, Canonico F, Parini R (2014) Epilepsia partialis continua and generalized nonconvulsive status epilepticus during the course of argininemia: a report on two cases. Neuropediatrics 45(2):123–128. doi: 10.1055/s-0033-1360479 PubMedGoogle Scholar
  44. Grody WW, Argyle C, Kern RM, Dizikes GJ, Spector EB, Strickland AD, Klein D, Cederbaum SD (1989) Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis. J Clin Investig 83(2):602–609. doi: 10.1172/JCI113923 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Grody WW, Kern RM, Klein D, Dodson AE, Wissman PB, Barsky SH, Cederbaum SD (1993) Arginase deficiency manifesting delayed clinical sequelae and induction of a kidney arginase isozyme. Hum Genet 91(1):1–5PubMedCrossRefGoogle Scholar
  46. Grody WW, Chang RJ, Panagiotis NM, Matz D, Cederbaum SD (1994) Menstrual cycle and gonadal steroid effects on symptomatic hyperammonaemia of urea-cycle-based and idiopathic aetiologies. J Inherit Metab Dis 17(5):566–574PubMedCrossRefGoogle Scholar
  47. Gropman AL, Summar M, Leonard JV (2007) Neurological implications of urea cycle disorders. J Inherit Metab Dis 30(6):865–879. doi: 10.1007/s10545-007-0709-5 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Gungor S, Akinci A, Firat AK, Tabel Y, Alkan A (2008) Neuroimaging findings in hyperargininemia. J Neuroimag Offi J Am Soc Neuroimag 18(4):457–462. doi: 10.1111/j.1552-6569.2007.00217.x CrossRefGoogle Scholar
  49. Haberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C (2012) Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Diseases 7:32. doi: 10.1186/1750-1172-7-32 CrossRefGoogle Scholar
  50. Haraguchi Y, Takiguchi M, Amaya Y, Kawamoto S, Matsuda I, Mori M (1987) Molecular cloning and nucleotide sequence of cDNA for human liver arginase. Proc Natl Acad Sci USA 84(2):412–415PubMedCentralPubMedCrossRefGoogle Scholar
  51. Hertecant JL, Al-Gazali LI, Karuvantevida NS, Ali BR (2009) A novel mutation in ARG1 gene is responsible for arginase deficiency in an Asian family. Saudi Med J 30(12):1601–1603PubMedGoogle Scholar
  52. Hewson S, Clarke JT, Cederbaum S (2003) Prenatal diagnosis for arginase deficiency: a case study. J Inherit Metab Dis 26(6):607–610PubMedCrossRefGoogle Scholar
  53. Hiramatsu M (2003) A role for guanidino compounds in the brain. Mol Cell Biochem 244(1–2):57–62PubMedCrossRefGoogle Scholar
  54. Jain-Ghai S, Nagamani SC, Blaser S, Siriwardena K, Feigenbaum A (2011) Arginase I deficiency: severe infantile presentation with hyperammonemia: more common than reported? Mol Genet Metab 104(1–2):107–111. doi: 10.1016/j.ymgme.2011.06.025 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Jorda A, Rubio V, Portoles M, Vilas J, Garcia-Pino J (1986) A new case of arginase deficiency in a Spanish male. J Inherit Metab Dis 9(4):393–397PubMedCrossRefGoogle Scholar
  56. Jorda A, Portoles M, Rubio V, Capdevila A, Vilas J, Garcia-Pino J (1987) Liver fibrosis in arginase deficiency. Arch Pathol Lab Med 111(8):691–692PubMedGoogle Scholar
  57. Kayali Z, Herring J, Baron P, Franco E, Ojogho O, Smith J, Watkins G, Smith D, Lamin V, Hoang T, Sharma R, Mathahs M, Sowers L, Brown KE, Schmidt WN (2009) Increased plasma nitric oxide, l-arginine, and arginase-1 in cirrhotic patients with progressive renal dysfunction. J Gastroenterol Hepatol 24(6):1030–1037. doi: 10.1111/j.1440-1746.2008.05757.x PubMedCrossRefGoogle Scholar
  58. Kim PS, Iyer RK, Lu KV, Yu H, Karimi A, Kern RM, Tai DK, Cederbaum SD, Grody WW (2002) Expression of the liver form of arginase in erythrocytes. Mol Genet Metab 76(2):100–110PubMedCrossRefGoogle Scholar
  59. Kojic J, Robertson PL, Quint DJ, Martin DM, Pang Y, Sundgren PC (2005) Brain glutamine by MRS in a patient with urea cycle disorder and coma. Pediatr Neurol 32(2):143–146. doi: 10.1016/j.pediatrneurol.2004.07.013 PubMedCrossRefGoogle Scholar
  60. Korman SH, Gutman A, Stemmer E, Kay BS, Ben-Neriah Z, Zeigler M (2004) Prenatal diagnosis for arginase deficiency by second-trimester fetal erythrocyte arginase assay and first-trimester ARG1 mutation analysis. Prenat Diagn 24(11):857–860. doi: 10.1002/pd.1000 PubMedCrossRefGoogle Scholar
  61. Kossel D (1904) Über die Arginase. Z Physiol Chemie 41:321–331CrossRefGoogle Scholar
  62. Krebs H (1932) Studies on urea formation in the animal organism. Hoppe-Seylers Z Physiol Chem 210:33–66CrossRefGoogle Scholar
  63. LaBrecque DR, Latham PS, Riely CA, Hsia YE, Klatskin G (1979) Heritable urea cycle enzyme deficiency-liver disease in 16 patients. J Pediatr 94(4):580–587PubMedCrossRefGoogle Scholar
  64. Lemieux B, Auray-Blais C, Giguere R, Shapcott D, Scriver CR (1988) Newborn urine screening experience with over one million infants in the Quebec Network of Genetic Medicine. J Inherit Metab Dis 11(1):45–55PubMedCrossRefGoogle Scholar
  65. Lonergan ET, Semar M, Sterzel RB, Treser G, Needle MA, Voyles L, Lange K (1971) Erythrocyte transketolase activity in dialyzed patients. A reversible metabolic lesion of uremia. N Engl J Med 284(25):1399–1403. doi: 10.1056/NEJM197106242842503 PubMedCrossRefGoogle Scholar
  66. Marescau B, Qureshi IA, De Deyn P, Letarte J, Ryba R, Lowenthal A (1985) Guanidino compounds in plasma, urine and cerebrospinal fluid of hyperargininemic patients during therapy. Clinica chimica acta Int J Clin Chem 146(1):21–27CrossRefGoogle Scholar
  67. Marescau B, De Deyn PP, Lowenthal A, Qureshi IA, Antonozzi I, Bachmann C, Cederbaum SD, Cerone R, Chamoles N, Colombo JP et al (1990) Guanidino compound analysis as a complementary diagnostic parameter for hyperargininemia: follow-up of guanidino compound levels during therapy. Pediatr Res 27(3):297–303. doi: 10.1203/00006450-199003000-00020 PubMedCrossRefGoogle Scholar
  68. Martins EG, Silva ES, Vilarinho S, Saudubray JM, Vilarinho L (2010) Neonatal cholestasis: an uncommon presentation of hyperargininemia. J Inherit Metab Dis 33(Suppl 3):S503–S506. doi: 10.1007/s10545-010-9263-7 CrossRefGoogle Scholar
  69. Michels VV, Beaudet AL (1978) Arginase deficiency in multiple tissues in argininemia. Clin Genet 13(1):61–67PubMedCrossRefGoogle Scholar
  70. Mizutani N, Hayakawa C, Maehara M, Watanabe K (1987a) Enzyme replacement therapy in a patient with hyperargininemia. Tohoku J Exp Med 151(3):301–307PubMedCrossRefGoogle Scholar
  71. Mizutani N, Hayakawa C, Ohya Y, Watanabe K, Watanabe Y, Mori A (1987b) Guanidino compounds in hyperargininemia. Tohoku J Exp Med 153(3):197–205PubMedCrossRefGoogle Scholar
  72. Mohseni J, Hock CB, Razak CA, Othman SN, Hayati F, Peitee WO, Haniffa M, Zilfalil BA, Mohd Rawi R, Ngu LH, Sasongko TH (2014) Novel complex re-arrangement of ARG1 commonly shared by unrelated patients with hyperargininemia. Gene 533(1):240–245. doi: 10.1016/j.gene.2013.09.081 PubMedCrossRefGoogle Scholar
  73. Mori T, Nagai K, Mori M, Nagao M, Imamura M, Iijima M, Kobayashi K (2002) Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr Dev Pathol Offi J Soc Pediatr Pathol Paediatr Pathol Soc 5(6):597–601. doi: 10.1007/s10024-002-0109-7 CrossRefGoogle Scholar
  74. Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137(6 Suppl 2):1602S–1609SPubMedGoogle Scholar
  75. Morris SM Jr, Bhamidipati D, Kepka-Lenhart D (1997) Human type II arginase: sequence analysis and tissue-specific expression. Gene 193(2):157–161PubMedCrossRefGoogle Scholar
  76. Naylor EW (1982) Newborn screening for urea cycle disorders. Adv Exp Med Biol 153:9–18PubMedCrossRefGoogle Scholar
  77. Naylor EW, Cederbaum SD (1981) Urinary pyrimidine excretion in arginase deficiency. J Inherit Metab Dis 4(4):207–210PubMedCrossRefGoogle Scholar
  78. Oldham MS, VanMeter JW, Shattuck KF, Cederbaum SD, Gropman AL (2010) Diffusion tensor imaging in arginase deficiency reveals damage to corticospinal tracts. Pediatr Neurol 42(1):49–52. doi: 10.1016/j.pediatrneurol.2009.07.017 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Picker JD, Puga AC, Levy HL, Marsden D, Shih VE, Degirolami U, Ligon KL, Cederbaum SD, Kern RM, Cox GF (2003) Arginase deficiency with lethal neonatal expression: evidence for the glutamine hypothesis of cerebral edema. J Pediatr 142(3):349–352. doi: 10.1067/mpd.2003.97 PubMedCrossRefGoogle Scholar
  80. Prasad AN, Breen JC, Ampola MG, Rosman NP (1997) Argininemia: a treatable genetic cause of progressive spastic diplegia simulating cerebral palsy: case reports and literature review. J Child Neurol 12(5):301–309PubMedCrossRefGoogle Scholar
  81. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68PubMedCrossRefGoogle Scholar
  82. Qureshi IA, Letarte J, Ouellet R, Lelievre M, Laberge C (1981) Ammonia metabolism in a family affected by hyperargininemia. Diabete Metab 7(1):5–11PubMedGoogle Scholar
  83. Qureshi IA, Letarte J, Ouellet R, Larochelle J, Lemieux B (1983) A new French-Canadian family affected by hyperargininaemia. J Inherit Metab Dis 6(4):179–182PubMedCrossRefGoogle Scholar
  84. Qureshi IA, Letarte J, Ouellet R, Batshaw ML, Brusilow S (1984) Treatment of hyperargininemia with sodium benzoate and arginine-restricted diet. J Pediatr 104(3):473–476PubMedCrossRefGoogle Scholar
  85. Rashed MS, Rahbeeni Z, Ozand PT (1999) Application of electrospray tandem mass spectrometry to neonatal screening. Semin Perinatol 23(2):183–193PubMedCrossRefGoogle Scholar
  86. Rovira A, Alonso J, Cordoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol 29(9):1612–1621. doi: 10.3174/ajnr.A1139 PubMedCrossRefGoogle Scholar
  87. Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, Moriyama M, Hsiao KJ, Yang Y (2004) Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 81(Suppl 1):S20–S26. doi: 10.1016/j.ymgme.2004.01.006 PubMedCrossRefGoogle Scholar
  88. Sakiyama T, Nakabayashi H, Shimizu H, Kondo W, Kodama S, Kitagawa T (1984) A successful trial of enzyme replacement therapy in a case of argininemia. Tohoku J Exp Med 142(3):239–248PubMedCrossRefGoogle Scholar
  89. Scaglia F, Lee B (2006) Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase I deficiency. Am J Med Genet Part C Sem Med Genet 142C(2):113–120. doi: 10.1002/ajmg.c.30091 CrossRefGoogle Scholar
  90. Scheuerle AE, McVie R, Beaudet AL, Shapira SK (1993) Arginase deficiency presenting as cerebral palsy. Pediatrics 91(5):995–996PubMedGoogle Scholar
  91. Schiff M, Benoist JF, Cardoso ML, Elmaleh-Berges M, Forey P, Santiago J, Ogier de Baulny H (2009) Early-onset hyperargininaemia: a severe disorder? J Inherit Metab Dis 32(Suppl 1):S175–S178. doi: 10.1007/s10545-009-1137-5 PubMedCrossRefGoogle Scholar
  92. Schulze A, Ebinger F, Rating D, Mayatepek E (2001) Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 74(4):413–419. doi: 10.1006/mgme.2001.3257 PubMedCrossRefGoogle Scholar
  93. Segawa Y, Matsufuji M, Itokazu N, Utsunomiya H, Watanabe Y, Yoshino M, Takashima S (2011) A long-term survival case of arginase deficiency with severe multicystic white matter and compound mutations. Brain Dev 33(1):45–48. doi: 10.1016/j.braindev.2010.03.001 PubMedCrossRefGoogle Scholar
  94. Shearer JD, Richards JR, Mills CD, Caldwell MD (1997) Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. Am J Physiol 272(2 Pt 1):E181–E190PubMedGoogle Scholar
  95. Silva ES, Martins E, Cardoso ML, Barbot C, Vilarinho L, Medina M (2001) Liver transplantation in a case of argininaemia. J Inherit Metab Dis 24(8):885–887CrossRefGoogle Scholar
  96. Silva ES, Cardoso ML, Vilarinho L, Medina M, Barbot C, Martins E (2013) Liver transplantation prevents progressive neurological impairment in argininemia. JIMD Rep 11:25–30. doi: 10.1007/8904_2013_218 PubMedCentralPubMedCrossRefGoogle Scholar
  97. Snyderman SE, Sansaricq C, Norton PM, Goldstein F (1979) Argininemia treated from birth. J Pediatr 95(1):61–63PubMedCrossRefGoogle Scholar
  98. Sparkes RS, Dizikes GJ, Klisak I, Grody WW, Mohandas T, Heinzmann C, Zollman S, Lusis AJ, Cederbaum SD (1986) The gene for human liver arginase (ARG1) is assigned to chromosome band 6q23. Am J Hum Genet 39(2):186–193PubMedCentralPubMedGoogle Scholar
  99. Spector EB, Kiernan M, Bernard B, Cederbaum SD (1980) Properties of fetal and adult red blood cell arginase: a possible prenatal diagnostic test for arginase deficiency. Am J Hum Genet 32(1):79–87PubMedCentralPubMedGoogle Scholar
  100. Spector EB, Rice SC, Cederbaum SD (1983) Immunologic studies of arginase in tissues of normal human adult and arginase-deficient patients. Pediatr Res 17(12):941–944PubMedCrossRefGoogle Scholar
  101. Steiner RD, Cederbaum SD (2001) Laboratory evaluation of urea cycle disorders. J Pediatr 138(1 Suppl):S21–S29PubMedCrossRefGoogle Scholar
  102. Stockler-Ipsiroglu S, van Karnebeek C, Longo N, Korenke GC, Mercimek-Mahmutoglu S, Marquart I, Barshop B, Grolik C, Schlune A, Angle B, Araujo HC, Coskun T, Diogo L, Geraghty M, Haliloglu G, Konstantopoulou V, Leuzzi V, Levtova A, Mackenzie J, Maranda B, Mhanni AA, Mitchell G, Morris A, Newlove T, Renaud D, Scaglia F, Valayannopoulos V, van Spronsen FJ, Verbruggen KT, Yuskiv N, Nyhan W, Schulze A (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111(1):16–25. doi: 10.1016/j.ymgme.2013.10.018 PubMedCrossRefGoogle Scholar
  103. Summar ML, Koelker S, Freedenberg D, Le Mons C, Haberle J, Lee HS, Kirmse B, European R, Network for Intoxication Type Metabolic Diseases. Electronic address hwe-ioeip, Members of the Urea Cycle Disorders Consortium. Electronic address hreueu (2013) The incidence of urea cycle disorders. Mol Genet Metab 110(1–2):179–180. doi: 10.1016/j.ymgme.2013.07.008 PubMedCentralPubMedCrossRefGoogle Scholar
  104. Terheggen SA, Lowenthal A, van Sande M, Colombo P (1969) Argininaemia with Arginase Deficiency. Lancet 294:748–749CrossRefGoogle Scholar
  105. Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1970a) Hyperargininemia with arginase deficiency. A new familial metabolic disease. II. Biochemical studies. Zeitschrift fur Kinderheilkunde 107(4):313–323Google Scholar
  106. Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1970b) Hyperargininemia wityh arginase deficiency. A new familial metabolic disease. I. Clinical studies. Zeitschrift fur Kinderheilkunde 107(4):298–312Google Scholar
  107. Terheggen HG, Lowenthal A, Lavinha F, Colombo JP (1975) Familial hyperargininaemia. Arch Dis Child 50(1):57–62PubMedCentralPubMedCrossRefGoogle Scholar
  108. Terheggen HG, Lowenthal A, Colombo JP (1982) Clinical and biochemical findings in argininemia. Adv Exp Med Biol 153:111–119PubMedCrossRefGoogle Scholar
  109. Tomlinson S, Westall RG (1964) Argininosuccinic Aciduria. Argininosuccinase and arginase in human blood cells. Clin Sci 26:261–269PubMedGoogle Scholar
  110. Tsang JP, Poon WL, Luk HM, Fung CW, Ching CK, Mak CM, Lam CW, Siu TS, Tam S, Wong VC (2012) Arginase deficiency with new phenotype and a novel mutation: contemporary summary. Pediatr Neurol 47(4):263–269. doi: 10.1016/j.pediatrneurol.2012.06.012 PubMedCrossRefGoogle Scholar
  111. Uchino T, Snyderman SE, Lambert M, Qureshi IA, Shapira SK, Sansaricq C, Smit LM, Jakobs C, Matsuda I (1995) Molecular basis of phenotypic variation in patients with argininemia. Hum Genet 96(3):255–260PubMedCrossRefGoogle Scholar
  112. Virarkar M, Alappat L, Bradford PG, Awad AB (2013) l-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci Nutr 53(11):1157–1167. doi: 10.1080/10408398.2011.573885 PubMedCrossRefGoogle Scholar
  113. Vockley JG, Tabor DE, Kern RM, Goodman BK, Wissmann PB, Kang DS, Grody WW, Cederbaum SD (1994) Identification of mutations (D128G, H141L) in the liver arginase gene of patients with hyperargininemia. Hum Mutat 4(2):150–154. doi: 10.1002/humu.1380040210 PubMedCrossRefGoogle Scholar
  114. Vockley JG, Goodman BK, Tabor DE, Kern RM, Jenkinson CP, Grody WW, Cederbaum SD (1996) Loss of function mutations in conserved regions of the human arginase I gene. Biochem Mol Med 59(1):44–51PubMedCrossRefGoogle Scholar
  115. Whitington PF, Alonso EM, Boyle JT, Molleston JP, Rosenthal P, Emond JC, Millis JM (1998) Liver transplantation for the treatment of urea cycle disorders. J Inherit Metab Dis 21(Suppl 1):112–118PubMedCrossRefGoogle Scholar
  116. Wiechert P, Marescau B, De Deyn PP, Lowenthal A (1989) Hyperargininemia, epilepsy and the metabolism of guanidino compounds. Padiatrie und Grenzgebiete 28(2):101–106PubMedGoogle Scholar
  117. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336(Pt 1):1–17PubMedCentralPubMedCrossRefGoogle Scholar
  118. Wu TF, Liu YP, Li XY, Wang Q, Ding Y, Ma YY, Song JQ, Yang YL (2013) Five novel mutations in ARG1 gene in Chinese patients of argininemia. Pediatr Neurol 49(2):119–123. doi: 10.1016/j.pediatrneurol.2013.04.026 PubMedCrossRefGoogle Scholar
  119. Wyse AT, Bavaresco CS, Hagen ME, Delwing D, Wannmacher CM, Severo Dutra-Filho C, Wajner M (2001) In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia. Brain Res 923(1–2):50–57PubMedCrossRefGoogle Scholar
  120. Wyse AT, Stefanello FM, Chiarani F, Delwing D, Wannmacher CM, Wajner M (2004) Arginine administration decreases cerebral cortex acetylcholinesterase and serum butyrylcholinesterase probably by oxidative stress induction. Neurochem Res 29(2):385–389PubMedCrossRefGoogle Scholar
  121. Yang Z, Ming XF (2014) Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders. Front Immunol 5:533. doi: 10.3389/fimmu.2014.00533 PubMedCentralPubMedCrossRefGoogle Scholar
  122. Zhang Y, Landau YE, Miller DT, Marsden D, Berry GT, Kellogg MD (2012) Recurrent unexplained hyperammonemia in an adolescent with arginase deficiency. Clin Biochem 45(18):1583–1586. doi: 10.1016/j.clinbiochem.2012.08.015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • A. Schlune
    • 1
    Email author
  • S. vom Dahl
    • 2
  • D. Häussinger
    • 2
  • R. Ensenauer
    • 1
  • E. Mayatepek
    • 1
  1. 1.Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s HospitalHeinrich Heine UniversityDüsseldorfGermany
  2. 2.Department of Gastroenterology, Hepatology and Infectious Diseases, University HospitalHeinrich Heine UniversityDüsseldorfGermany

Personalised recommendations