Amino Acids

, Volume 47, Issue 9, pp 1875–1883 | Cite as

Homoarginine (hArg) and asymmetric dimethylarginine (ADMA) in short stature children without and with growth hormone deficiency: hArg and ADMA are involved differently in growth in the childhood

  • Jennifer Langen
  • Arslan Arinc Kayacelebi
  • Bibiana Beckmann
  • Katharina Weigt-Usinger
  • Christina Carmann
  • Irina Hörster
  • Eggert Lilienthal
  • Annette Richter-Unruh
  • Dimitrios Tsikas
  • Thomas LückeEmail author
Original Article
Part of the following topical collections:
  1. Homoarginine, Arginine and Relatives


Adult subjects with growth hormone (GH) deficiency (GHD) are known to have reduced life expectancy due to increased cardiovascular and cerebrovascular events. In adults, these events are associated with elevated circulating concentrations of asymmetric dimethylarginine (ADMA) which is an endogenous inhibitor of l-arginine (Arg)-derived nitric oxide (NO). Low circulating concentrations of homoarginine (hArg) emerged as a cardiovascular risk factor. In adults, hArg seems to antagonize ADMA. In the present work, we tested the hypothesis that children with short stature without or with GHD have altered Arg/NO pathway as compared to children with normal growth. We studied 66 short stature children (38 boys, 28 girls) aged 3.5–17.3 years, who underwent the routine l-Arginine Test to diagnose presence of GHD. GHD was confirmed in 47 children (GHD group; 30 boys, 17 girls) and was absent in the remaining 19 children (non-GHD group; 8 boys, 11 girls). In addition, we investigated 24 healthy age- and gender-matched children (10 boys, 14 girls) with normal growth. In EDTA plasma samples of all children, we determined by mass spectrometry-based methods the concentrations of Arg, hArg and ADMA, and calculated the Arg/ADMA and hArg/ADMA molar ratios. With respect to these biochemical parameters, we did not find statistically significant differences between the GHD and non-GHD groups. Comparing short with normal stature children, we found small differences regarding plasma hArg concentrations [mean ± SD; median (25th–75th percentile)]: 2.06 ± 0.52 µM; 2.12 (1.74–2.36) µM vs. 1.7 ± 0.5 µM; 1.6 (1.4–1.8) µM, P < 0.001. Compared to normal stature children, short stature children had considerably higher plasma concentrations of ADMA [0.77 ± 0.15 µM; 0.77 (0.66–0.85) µM vs. 0.57 ± 0.09 µM; 0.58 (0.50–0.63) µM, P < 0.001], but not of Arg [83.3 ± 19.2 µM; 82.2 (71.9–90.3) µM vs. 86.5 ± 17.8 µM; 84.8 (77.2–94.8) µM, P = 0.336], or the hArg/ADMA ratio [2.74 ± 0.76; 2.7 (2.2–3.1) vs. 3.1 ± 1.2; 2.85 (2.42–3.66), P = 0.161. hArg in the GHD group (r = 0.41, P = 0.004) and the hArg/ADMA ratio in both groups (r = 0.44, P = 0.002 in GHD; r = 0.55, P = 0.01 in non-GHD)], but not ADMA were positively correlated with insulin-like growth factor-1 (IGF-1). hArg and hArg/ADMA differed between girls and boys in the GHD and non-GHD groups but in the normal growth group. The hArg/ADMA ratio increased with age in all groups. Our study suggests that hArg and ADMA are involved in growth in the childhood, presumably in an antagonistic manner, with ADMA slowing and hArg accelerating growth.


ADMA Arginine Children Growth hormone Homoarginine IGF-1 Short stature 



Asymmetric dimethylarginine


Arginine:glycine amidinotransferase




Body mass index


Growth hormone


Growth hormone deficiency




Insulin-like growth factor 1


Insulin-like growth factor binding protein


Nitric oxide


Nitric oxide synthase


Parathyroid hormone


Quality control


Thyroid stimulating hormone


Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standards

Accepted principles of ethical and professional conduct have been followed. The studies were approved by the Ethics Committees of the Bochum University. Informed consent of the parents of the children involved in the study was obtained.


  1. Atzler D, Rosenberg M, Andersso M, Choe CU, Lutz M, Zugck C, Böger RH, Frey N, Schwedhelm E (2013) Homoarginine—an independent marker of mortality in heart failure. Int J Cardiol 168:4907–4909CrossRefPubMedGoogle Scholar
  2. Baars J, Van den Broeck J, le Cessie S (1998) Body mass index in growth hormone deficient children before and during growth hormone treatment. Horm Res 49:39–45CrossRefPubMedGoogle Scholar
  3. Binder G (2014) Kleinwuchs und Therapie. Monatsschrift Kinderheilkunde 162:299–308CrossRefGoogle Scholar
  4. Brooks ER, Langmann CB, Wang S, Price HE, Hodges AL, Darling L, Yang AZ, Smith FA (2009) Methylated arginine derivates in children and adolescents with chronic kidney disease. Pediatr Nephrol 24:129–134CrossRefPubMedGoogle Scholar
  5. Bulow B, Hagmar L, Mikoczy Z, Nordström CH, Erfurth EM (1997) Increased cerebrovascular mortality in patients with hypopituitarism. Clin Endocrin 46:75–81CrossRefGoogle Scholar
  6. Capaldo B, Guardasole V, Pardo F, Matarazzo M, Di Rella F, Numis F, Merola B, Longobardi S, Sacca L (2001) Abnormal vascular reactivity in growth hormone deficiency. Circulation 103(4):520–524CrossRefPubMedGoogle Scholar
  7. Chobanyan-Jürgens K, Fuchs A-J, Tsikas D, Kanzelmeyer N, Das AM, Illsinger S, Vaske B, Jordan J, Lücke T (2012) Increased asymmetric dimethylarginine (ADMA) dimethylaminohydrolase (DDAH) activity in childhood hypercholesterinemia type II. Amino Acids 43(2):805–811CrossRefPubMedGoogle Scholar
  8. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10):3527–3561PubMedGoogle Scholar
  9. Colao A, Di Somma C, Filippella M, Rota F, Piconello R, Orio F, Vitale G, Lombardi G (2004) Insulin-like growth factor-1 deficiency determines increased intima-media thickness at common carotid arteries in adult patients with growth hormone deficiency. Clin Endocrinol (Oxf) 61(3):360–366CrossRefGoogle Scholar
  10. Colao A, Di Somma C, Spiezia S, Rota F, Pivonello R, Savastano S, Lombardi G (2006) The natural history of partial growth hormone deficiency in adults: a prospective study on the cardiovascular risk and atherosclerosis. J Clin Endocrinol Metab 91(6):2191–2200CrossRefPubMedGoogle Scholar
  11. Cooke JP (2006) Asymmetric dimethylarginine (ADMA): an endogenous inhibitor of angiogenesis. Eur J Clin Pharmacol 62:115–121CrossRefGoogle Scholar
  12. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509CrossRefPubMedGoogle Scholar
  13. Davids M, Ndika JD, Salomons GS, Blom HJ, Teerlink T (2012) Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 586:3653–3657CrossRefPubMedGoogle Scholar
  14. Davis PH, Dawson JD, Riley WA, Lauer RM (2001) Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: the Muscatine Study. Circulation 104:2815–2819CrossRefPubMedGoogle Scholar
  15. Dawson JD, Sonka M, Blecha MB, Lin W, Davis PH (2009) Risk factors associated with aortic and carotid intima-media thickness in adolescents and young adults: the Muscatine Offspring Study. J Am Coll Cardiol 53(24):2273–2279PubMedCentralCrossRefPubMedGoogle Scholar
  16. De Marco S, Marcovecchio ML, Caniglia D, De Leonibus C, Chiarelli F, Mohn A (2014) Circulating asymmetric dimethylarginine and lipid profile in pre-pubertal children with growth hormone deficiency: effect of 12-month growth hormone replacement therapy. Growth Horm IGF Res 5:216–220CrossRefGoogle Scholar
  17. Drechsler C, Meinitzer A, Pilz S, Krane V, Tomaschitz A, Ritz E, März W, Wanner C (2011) Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur J Heart Fail 13:852–859PubMedCentralCrossRefPubMedGoogle Scholar
  18. Foster C, Burton A, Scholl J, Scott ML, Gunter V, McCormick K (2014) Lipid patterns in treated growth hormone deficient children vs. short stature controls. J Pediatr Endocrinol Metab 27:909–914CrossRefPubMedGoogle Scholar
  19. Goonasekera CDA, Rees DD, Woolard P, Frend A, Shah V, Dillon MJ (1997) Nitric oxide synthase inhibition and hypertension in children and adolescents. J Hypertens 15:901–909CrossRefPubMedGoogle Scholar
  20. Hecker M, Walsh DT, Vane JR (1991) On the substrate specificity of nitric oxide synthase. FEBS Lett 294:221–224CrossRefPubMedGoogle Scholar
  21. Jehlicka P, Stozicky F, Mayer OJR, Varvarovska J, Racek J, Trefil L, Siala K (2009) Asymmetric dimethylarginine and the effect of folat substitution in children with familial hypercholesterolemia and diabetes mellitus type I. Physiol Res 58:179–184PubMedGoogle Scholar
  22. Kanzelmeyer N, Tsikas D, Chobanyan-Jürgens K, Beckmann B, Vaske B, Illsinger S, Das AM, Lücke T (2011) Asymmetric dimethylarginine in children with homocystinuria or phenylketonuria. Amino Acids 42(5):1765–1772CrossRefPubMedGoogle Scholar
  23. Kayacelebi AA, Pham VV, Willers J, Hahn A, Stichtenoth DO, Jordan J, Tsikas D (2014a) Plasma homoarginine (hArg) and asymmetric dimethylarginine (ADMA) in patients with rheumatoid arthritis: is homoarginine a cardiovascular corrective in rheumatoid arthritis, an anti-ADMA? Int J Cardiol 176(3):1129–1131CrossRefPubMedGoogle Scholar
  24. Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014b) GC-MS and GC- MS/MS measurement of the cardiovascular risk factor homoarginine in biological samples. Amino Acids 46:2205–2217CrossRefPubMedGoogle Scholar
  25. Kayacelebi AA, Knöfel AK, Beckmann B, Hanff E, Warnecke G, Tsikas D (2015a) Measurement of unlabeled and stable isotope-labeled homoarginine, arginine and their metabolites in biological samples by GC-MS and GC-MS/MS. Amino Acids. doi: 10.1007/s00726-015-1984-3 Google Scholar
  26. Kayacelebi AA, Langen J, Weigt-Usinger K, Chobanyan-Jürgens K et al (2015b) Biosynthesis of homoarginine (hArg) and asymmetric dimethylarginine (ADMA) from acutely and chronically administered free l-arginine in humans. Amino Acids. doi: 10.1007/s00726-015-2012-3 Google Scholar
  27. Khadilkar V, Ekbote V, Kajale N, Khadilkar A, Chiplonkar S, Kinare A (2014) Effect of one-year growth hormone therapy on body composition and cardio-metabolic risk in Indian children with growth hormone deficiency. Endocr Res 39(2):73–78PubMedGoogle Scholar
  28. Khalil AA, Tsikas D, Akolekar R, Jordan J, Nicolaides KH (2013) Asymmetric dimethylarginine, arginine and homoarginine at 11-13 weeks’ gestation and preeclampsia: a case-control study. J Hum Hypertens 27:38–43CrossRefPubMedGoogle Scholar
  29. Kielstein A, Tsikas D, Galloway GP, Mendelson JE (2007) Asymmetric dimethylarginine (ADMA)—a modulator of nociception in opiate tolerance and addiction? Nitric Oxide 17:55–59PubMedCentralCrossRefPubMedGoogle Scholar
  30. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, Rosén T, Lindstedt G, Lundberg PA, Bengtsson BA (1994) Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol (Oxf) 41:351–357CrossRefGoogle Scholar
  31. Leifke E, Kinzel M, Tsikas D, Gooren L, Frölich JC, Brabant G (2008) Effects of normalization of plasma testosterone evels in hypogonadal men on plasma levels and urinary excretion of asymmetric dimethylarginine (ADMA). Horm Metab Res 40:56–59CrossRefPubMedGoogle Scholar
  32. Leiper M, Vallance P (2006) The synthesis and metabolism of asymmetric dimethylarginine (ADMA). Eur J Clin Pharmacol 62:33–38CrossRefGoogle Scholar
  33. Li G, Del Rincon JP, Jahn LA, Wu Y, Gaylinn B, Thorner MO, Liu Z (2008) Growth hormone exerts acute vascular effects independent of systemic or muscle insulin-like growth factor I. J Clin Endocrinol Metab 93:1379–1385PubMedCentralCrossRefPubMedGoogle Scholar
  34. Lombardi G, Di Somma C, Vuolo L, Guerra E, Scarano E, Colao A (2010) Role of IGF-I on PTH effects on bone. J Endocrinol Invest 33(7 Suppl):22–26PubMedGoogle Scholar
  35. Lücke T, Tsikas D, Kanzelmeyer N, Vaske B, Das AM (2006) Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine in citrullinemia. Metabolism 55:1599–1603CrossRefPubMedGoogle Scholar
  36. Lücke T, Kanzelmeyer N, Kemper MJ, Tsikas D, Das AM (2007) Developmental changes in the l-arginine/nitric oxide pathway from infancy to adulthood: plasma asymmetric dimethylarginine levels decrease with age. Clin Chem Lab Med 45:1525–1530CrossRefPubMedGoogle Scholar
  37. Lücke T, Kanzelmeyer N, Chobanyan K, Tsikas D, Franke D, Kemper MJ, Ehrich JHH, Das AM (2008) Elevated asymmetric dimethylarginine (ADMA) and inverse correlation between circulating ADMA and glomerular filtration rate in children with sporadic focal semental glomerulosclerosis (FSGS). Nephrol Dial Transplant 23:734–740CrossRefPubMedGoogle Scholar
  38. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, Wanner C (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975CrossRefPubMedGoogle Scholar
  39. Moali C, Boucher JL, Sari MA, Stuehr DJ, Mansuy D (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega- hydroxy derivatives, and N omega-hydroxynor-l-arginine. Biochemistry 37:10453–10460CrossRefPubMedGoogle Scholar
  40. Önder A, Aycan Z, Koca C, Ergin M, Çetinkaya S, Ağladıoğlu SY, Peltek Kendirci HN, Baş VN (2014) Evaluation of asymmetric dimethylarginine (ADMA) levels in children with growth hormone deficiency. J Clin Res Pediatr Endocrinol 6(1):22–27PubMedCentralCrossRefPubMedGoogle Scholar
  41. Pilz S, Tomaschitz A, Meinitzer A, Drechsler C, Ritz E, Krane V, Wanner C, Böhm BO, März W (2011a) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42:1132–1134CrossRefPubMedGoogle Scholar
  42. Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V, Wanner C, Böhm BO, März W (2011b) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97:1222–1227CrossRefPubMedGoogle Scholar
  43. Pilz S, Teerlink T, Scheffer PG, Meinitzer A, Rutters F, Tomaschitz A, Drechsler C, Kienreich K, Nijpels G, Stehouwer CD, März W, Dekker JM (2014) Homoarginine and mortality in an older population: the Hoorn study. Eur J Clin Invest 44:200–208CrossRefPubMedGoogle Scholar
  44. Pilz S, Meinitzer A, Gaksch M, Grübler M, Verheyen N, Drechsler C, Hartaigh BÓ, Lang F, Alesutan I, Voelkl J, März W, Tomaschitz A (2015a) Homoarginine in the renal and cardiovascular systems. Amino Acids. doi: 10.1007/s00726-015-1993-2 Google Scholar
  45. Pilz S, Putz-Bankuti C, Meinitzer A, März W, Kienreich K, Stojakovic T, Pieber TR, Stauber RE (2015b) Association of homoarginine and methylarginines with liver dysfunction and mortality in chronic liver disease. Amino Acids. doi: 10.1007/s00726-015-2000-7 Google Scholar
  46. Rosen T, Bengtsson BA (1990) Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 336(8710):285–288CrossRefPubMedGoogle Scholar
  47. Rosenbaum M, Gernter JM, Leiber RL (1989) Effects of systemic growth hormone (GH) administration on regional adipose tissue distribution and metabolism in GH- deficient children. J Clin Endocrinol Metab 69:1274–1281CrossRefPubMedGoogle Scholar
  48. Scalera F, Borlak J, Beckmann B, Martens-Lobenhoffer J, Thum T, Täger M, Bode-Böger SM (2004) Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl l-arginine accelerates endothelial cell senescence. Arterioscler Thromb Vasc Biol 24:1816–1822CrossRefPubMedGoogle Scholar
  49. Setola E, Monti LD, Lanzi R, Lucotti P, Losa M, Gatti E, Galluccio E, Oldani M, Fermo I, Giovannelli M, Bosi E, Piatti PM (2008) Effects of growth hormone treatment on arginine to asymmetric dimethylarginine ratio and endothelial function in patients with growth hormone deficiency. Metabolism 57:1685–1690CrossRefPubMedGoogle Scholar
  50. Thum T, Fleissner F, Klink I, Tsikas D, Jakob M, Bauersachs J, Stichtenoth DO (2007) Growth hormone treatment improves markers of systemic nitric oxide bioavailability via insulin-like growth factor-I. J Clin Endocrinol Metab 92:4172–4179CrossRefPubMedGoogle Scholar
  51. Tomaschitz A, Verheyen N, Gaksch M, Meinitzer A, Pieske B, Kraigher-Krainer E, Colantonio C, März W, Schmidt A, Belyavskiy E, Rus-Machan J, van Ballegooijen AJ, Stiegler C, Amrein K, Ritz E, Fahrleitner-Pammer A, Pilz S (2015) Homoarginine in patients with primary hyperparathyroidism. Am J Med Sci 349:306–311CrossRefPubMedGoogle Scholar
  52. Tsikas D (2009) De novo synthesis of trideuteromethyl esters of amino acids for use in GC-MS and GC-tandem MS exemplified for ADMA in human plasma and urine: standardization, validation, comparison and proof of evidence for their aptitude as internal standards. J Chromatogr B Analyt Technol Biomed Life Sci 877(23):2308–2320CrossRefPubMedGoogle Scholar
  53. Tsikas D, Kayacelebi AA (2014) Do homoarginine and asymmetric dimethylarginine act antagonistically in the cardiovascular system? Circ J 78(8):2094–2095CrossRefPubMedGoogle Scholar
  54. Tsikas D, Schubert B, Grutzki FM, Sandmann J, Frölich JC (2003) Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectometry as methyl ester tri(N- pentrafluoropropionyl) derivate. J Chromatogr B Analyt Technol Biomed Life Sci 798:87–99CrossRefPubMedGoogle Scholar
  55. Valtonen P, Laitinen T, Lyyra-Laitinen T, Raitakari OT, Juonala M, Viikari JS, Heiskanen N, Vanninen E, Punnonen K, Heinonen S (2008) Serum l-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ J 72:1879–1884CrossRefPubMedGoogle Scholar
  56. van Ballegooijen AJ, Reinders I, Visser M, Dekker JM, Nijpels G, Stehouwer CD, Pilz S, Brouwer IA (2013) Serum parathyroid hormone in relation to all-cause and cardiovascular mortality: the Hoorn study. J Clin Endocrinol Metab 98:E638–E645CrossRefPubMedGoogle Scholar
  57. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Jennifer Langen
    • 1
  • Arslan Arinc Kayacelebi
    • 2
  • Bibiana Beckmann
    • 2
  • Katharina Weigt-Usinger
    • 1
  • Christina Carmann
    • 1
  • Irina Hörster
    • 1
  • Eggert Lilienthal
    • 3
  • Annette Richter-Unruh
    • 4
  • Dimitrios Tsikas
    • 2
  • Thomas Lücke
    • 1
    Email author
  1. 1.Department of Neuropaediatrics, Children’s HospitalUniversity of BochumBochumGermany
  2. 2.Centre of Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
  3. 3.Section of Endocrinology, Children’s HospitalUniversity of BochumBochumGermany
  4. 4.Department of Endocrinology, Children’s HospitalUniversity of MünsterMünsterGermany

Personalised recommendations