Skip to main content
Log in

Vasopressin signaling at brain level controls stress hormone release: the vasopressin-deficient Brattleboro rat as a model

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The nonapeptide arginine vasopressin (AVP) has long been suggested to play an important role as a secretagogue for triggering the activity of the endocrine stress response. Most recent studies employed mutant mice for analyzing the importance of AVP for endocrine regulation under stress. However, it is difficult to compare and draw overall conclusions from all these studies as mixing the genetic material from different mouse strains has consequences on the individual’s stress response. Moreover, mice are not ideal subjects for several experimental procedures. Therefore, to get more insight, we used a rather old mutant rat model: the AVP-deficient Brattleboro rat. The present short review is aimed at providing the most interesting results of these studies within the last 8 years that allowed gaining new insights in the potential signal function of AVP in stress and endocrine regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Samra AB, Harwood JP, Manganiello VC, Catt KJ, Aguilera G (1987) Phorbol 12-myristate 13-acetate and vasopressin potentiate the effect of corticotropin-releasing factor on cyclic AMP production in rat anterior pituitary cells. Mechanisms of action. J Biol Chem 262:1129–1136

    CAS  PubMed  Google Scholar 

  • Aguilera G (1994) Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 15:321–350

    Article  CAS  PubMed  Google Scholar 

  • Anonymus (2010) Rats. Nat Methods 7:413

    Article  Google Scholar 

  • Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14:76–122. doi:10.1006/frne.1993.1004

    Article  CAS  PubMed  Google Scholar 

  • Antoni FA, Sosunov AA, Haunso A, Paterson JM, Simpson J (2003) Short-term plasticity of cyclic adenosine 3′,5′-monophosphate signaling in anterior pituitary corticotrope cells: the role of adenylyl cyclase isotypes. Mol Endocrinol 17:692–703. doi:10.1210/me.2002-0369

    Article  CAS  PubMed  Google Scholar 

  • Balazsfi D, Pinter O, Klausz B, Kovacs KB, Fodor A, Torok B, Engelmann M, Zelena D (2015) Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats. Psychoneuroendocrinology 51:11–23. doi:10.1016/j.psyneuen.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP (2008) Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab 19:175–180. doi:10.1016/j.tem.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  • Bredy TW, Humpartzoomian RA, Cain DP, Meaney MJ (2003) Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience 118:571–576

    Article  CAS  PubMed  Google Scholar 

  • Bundzikova J, Pirnik Z, Zelena D, Mikkelsen JD, Kiss A (2008) Response of substances co-expressed in hypothalamic magnocellular neurons to osmotic challenges in normal and Brattleboro rats. Cell Mol Neurobiol 28:1033–1047. doi:10.1007/s10571-008-9306-x

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Young S, Subburaju S, Sheppard J, Kiss A, Atkinson H, Wood S, Lightman S, Serradeil-Le Gal C, Aguilera G (2008) Vasopressin does not mediate hypersensitivity of the hypothalamic pituitary adrenal axis during chronic stress. Ann N Y Acad Sci 1148:349–359. doi:10.1196/annals.1410.037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawley JN (1996) Unusual behavioral phenotypes of inbred mouse strains. Trends Neurosci 19:181–182

    Article  CAS  PubMed  Google Scholar 

  • Crusio WE (1996) Gene-targeting studies: new methods, old problems. Trends Neurosci 19:186–187

    Article  CAS  PubMed  Google Scholar 

  • Crusio WE (2004) Flanking gene and genetic background problems in genetically manipulated mice. Biol Psychiatry 56:381–385. doi:10.1016/j.biopsych.2003.12.026

    Article  CAS  PubMed  Google Scholar 

  • Dallman MF (1993) Stress update adaptation of the hypothalamic-pituitary-adrenal axis to chronic stress. Trends Endocrinol Metab 4:62–69

    Article  CAS  PubMed  Google Scholar 

  • Davies W, Isles A, Smith R, Karunadasa D, Burrmann D, Humby T, Ojarikre O, Biggin C, Skuse D, Burgoyne P, Wilkinson L (2005) Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nat Genet 37:625–629. doi:10.1038/ng1577

    Article  CAS  PubMed  Google Scholar 

  • Domokos A, Mergl Z, Barna I, Makara GB, Zelena D (2008) Congenital vasopressin deficiency and acute and chronic opiate effects on hypothalamo-pituitary-adrenal axis activity in Brattleboro rats. J Endocrinol 196:113–121

    Article  CAS  PubMed  Google Scholar 

  • Du Vigneaud V (1954) Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect 50:1–26

    Google Scholar 

  • Ebner K, Wotjak CT, Holsboer F, Landgraf R, Engelmann M (1999) Vasopressin released within the septal brain area during swim stress modulates the behavioural stress response in rats. Eur J Neurosci 11:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Ebner K, Wotjak CT, Landgraf R, Engelmann M (2002) Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. Eur J Neurosci 15:384–388

    Article  PubMed  Google Scholar 

  • Engelmann M, Thrivikraman KV, Su Y, Nemeroff CB, Montkowski A, Landgraf R, Holsboer F, Plotsky PM (1996) Endocrine and behavioral effects of airpuff-startle in rats. Psychoneuroendocrinology 21:391–400

    Article  CAS  PubMed  Google Scholar 

  • Engelmann M, Ebner K, Wotjak CT, Landgraf R (1998) Endogenous oxytocin is involved in short-term olfactory memory in female rats. Behav Brain Res 90:89–94

    Article  CAS  PubMed  Google Scholar 

  • Engelmann M, Landgraf R, Wotjak CT (2004) The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol 25:132–149. doi:10.1016/j.yfrne.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  • Francis DD, Meaney MJ (1999) Maternal care and the development of stress responses. Curr Opin Neurobiol 9:128–134

    Article  CAS  PubMed  Google Scholar 

  • Friedmann AS, Memoli VA, Yu XM, North WG (1993) Biosynthesis of vasopressin by gastrointestinal cells of Brattleboro and Long-Evans rats. Peptides 14:607–612

    Article  CAS  PubMed  Google Scholar 

  • Gallo-Payet N, Guillon G (1998) Regulation of adrenocortical function by vasopressin. Horm Metab Res 30:360–367. doi:10.1055/s-2007-978899

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181

    Article  CAS  PubMed  Google Scholar 

  • Giguere V, Labrie F (1982) Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-releasing factor (CRF) in rat anterior pituitary cells in culture. Endocrinology 111:1752–1754

    Article  CAS  PubMed  Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357

    Article  CAS  PubMed  Google Scholar 

  • Gregg C, Zhang J, Butler JE, Haig D, Dulac C (2010) Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329:682–685. doi:10.1126/science.1190831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horn TF, Engelmann M (2001) In vivo microdialysis for nonapeptides in rat brain–a practical guide. Methods 23:41–53. doi:10.1006/meth.2000.1104

    Article  CAS  PubMed  Google Scholar 

  • Ivell R, Schmale H, Krisch B, Nahke P, Richter D (1986) Expression of a mutant vasopressin gene: differential polyadenylation and read-through of the mRNA 3′ end in a frame-shift mutant. EMBO J 5:971–977

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kvetňanský R, Ježová D, Opršalová Z, Földes O, Michajlovskij N, Dobrakovová M, Lichardus B, Makara GB (1990) Regulation of the sympathetic nervous system by circulating vasopressin. In: Porter JC, Ježová D (eds) Circulating regulatory factors and neuroendocrine function. Springer, New York, US

    Google Scholar 

  • Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci 3:799–806. doi:10.1038/77702

    Article  CAS  PubMed  Google Scholar 

  • Lutz-Bucher B, Koch B, Mialhe C, Briaud B (1980) Involvement of vasopressin in corticotropin-releasing effect of hypothalamic median eminence extract. Neuroendocrinology 30:178–182

    Article  CAS  PubMed  Google Scholar 

  • Makara GB, Varga J, Barna I, Pinter O, Klausz B, Zelena D (2012) The vasopressin-deficient Brattleboro rat: lessons for the hypothalamo-pituitary-adrenal axis regulation. Cell Mol Neurobiol 32:759–766. doi:10.1007/s10571-012-9842-2

    Article  CAS  PubMed  Google Scholar 

  • Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D (2007) Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav 51:395–405. doi:10.1016/j.yhbeh.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  • Muglia LJ, Jacobson L, Luedke C, Vogt SK, Schaefer ML, Dikkes P, Fukuda S, Sakai Y, Suda T, Majzoub JA (2000) Corticotropin-releasing hormone links pituitary adrenocorticotropin gene expression and release during adrenal insufficiency. J Clin Invest 105:1269–1277. doi:10.1172/JCI5250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nussey SS, Ang VT, Jenkins JS, Chowdrey HS, Bisset GW (1984) Brattleboro rat adrenal contains vasopressin. Nature 310:64–66

    Article  CAS  PubMed  Google Scholar 

  • Preil J, Muller MB, Gesing A, Reul JM, Sillaber I, van Gaalen MM, Landgrebe J, Holsboer F, Stenzel-Poore M, Wurst W (2001) Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2. Endocrinology 142:4946–4955

    Article  CAS  PubMed  Google Scholar 

  • Rivier C, Vale W (1983) Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 113:939–942

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Sawyer WH, Valtin H, Sokol HW (1964) Neurohypophysial principles in rats with familial hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 74:153–155. doi:10.1210/endo-74-1-153

    Article  CAS  PubMed  Google Scholar 

  • Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308:705–709

    Article  CAS  PubMed  Google Scholar 

  • Scott LV, Dinan TG (2002) Vasopressin as a target for antidepressant development: an assessment of the available evidence. J Affect Disord 72:113–124

    Article  CAS  PubMed  Google Scholar 

  • Selye H (1975) Stress and distress. Compr Ther 1:9–13

    CAS  PubMed  Google Scholar 

  • Sokol W, Valtin H (1982) The Brattleboro rat. Annals of the New York Academy of Sciences, New York

    Google Scholar 

  • Somova L, Ivanova E, Zaharieva S, Machuganska A (1986) Changes of adrenal vasopressin during hemorrhagic shock in rats with hereditary diabetes insipidus (Brattleboro strain). Acta Physiol Pharmacol Bulg 12:70–75

    CAS  PubMed  Google Scholar 

  • Spiess J, Rivier J, Rivier C, Vale W (1981) Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci USA 78:6517–6521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sterrenburg L, Borch A, Peeters BW, Pinter O, Zelena D, Roubos EW, Kozicz T (2011) Acute ether stress differentially affects corticotropin-releasing factor and urocortin 1 in the Brattleboro rat. Brain Res 1398:21–29. doi:10.1016/j.brainres.2011.04.047

    Article  CAS  PubMed  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397

    Article  CAS  PubMed  Google Scholar 

  • Valtin H, Schroeder HA (1964) Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Am J Physiol 206:425–430

    CAS  PubMed  Google Scholar 

  • Wilkins JF (2005) Genomic imprinting and methylation: epigenetic canalization and conflict. Trends Genet 21:356–365. doi:10.1016/j.tig.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  • Wotjak CT, Kubota M, Liebsch G, Montkowski A, Holsboer F, Neumann I, Landgraf R (1996) Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci 16:7725–7732

    CAS  PubMed  Google Scholar 

  • Wotjak CT, Ganster J, Kohl G, Holsboer F, Landgraf R, Engelmann M (1998) Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: new insights into the secretory capacities of peptidergic neurons. Neuroscience 85:1209–1222

    Article  CAS  PubMed  Google Scholar 

  • Wotjak CT, Landgraf R, Engelmann M (2008) Listening to neuropeptides by microdialysis: echoes and new sounds? Pharmacol Biochem Behav 90:125–134. doi:10.1016/j.pbb.2008.03.017

    Article  CAS  PubMed  Google Scholar 

  • Zelena D, Makara GB (2012) The role of adrenocorticotropin beyond the glucocorticoid horizon in corticotropin: pharmacology, clinical uses and adverse effects. In: Advances in medicine and biology, vol 43, chap III. Nova Publisher, New York, pp 109–138

    Google Scholar 

  • Zelena D, Foldes A, Mergl Z, Barna I, Kovacs KJ, Makara GB (2004) Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats. Brain Res Bull 63:521–530

    Article  CAS  PubMed  Google Scholar 

  • Zelena D, Filaretova L, Mergl Z, Barna I, Toth ZE, Makara GB (2006) Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. Am J Physiol Endocrinol Metab 290:E243–E250

    Article  CAS  PubMed  Google Scholar 

  • Zelena D, Domokos A, Mergl Z, Barna I, Földes A, Kovács KJ, Makara GB (2007) The role of vasopressin in chronic stress-induced hypothalamo-pituitary-adrenal axis hyperactivity: studies on Brattleboro rats with repeated restraint. Neuropeptide research trends. Nova Publishers, New York, pp 189–212

    Google Scholar 

  • Zelena D, Domokos A, Jain SK, Jankord R, Filaretova L (2009a) The stimuli-specific role of vasopressin in the hypothalamus-pituitary-adrenal axis response to stress. J Endocrinol 202:263–278

    Article  CAS  PubMed  Google Scholar 

  • Zelena D, Langnaese K, Domokos A, Pinter O, Landgraf R, Makara GB, Engelmann M (2009b) Vasopressin administration into the paraventricular nucleus normalizes plasma oxytocin and corticosterone levels in Brattleboro rats. Endocrinology 150:2791–2798

    Article  CAS  PubMed  Google Scholar 

  • Zelena D, Barna I, Pinter O, Klausz B, Varga J, Makara GB (2011) Congenital absence of vasopressin and age-dependent changes in ACTH and corticosterone stress responses in rats. Stress 14:420–430. doi:10.3109/10253890.2011.552991

    CAS  PubMed  Google Scholar 

  • Zelena D, Pinter O, Langnaese K, Richter K, Landgraf R, Makara GB, Engelmann M (2013) Oxytocin in Brattleboro rats: increased synthesis is contrasted by blunted intrahypothalamic release from supraoptic nucleus neurones. J Neuroendocrinol 25:711–718. doi:10.1111/jne.12047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by OTKA Grants F 48783, IN 67249 and NN 71629, Hungary and and DFG (EN 366/3-1, 436 UNG 113/168/0-1 & 0-2).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We treated the animals according to guidelines of the European Communities Council Directive of 24 November 1986 (86/609/EEC) and our work was supervised by the Animal Welfare Committee of the Institute of Experimental Medicine, Budapest, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Engelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelena, D., Pintér, O., Balázsfi, D.G. et al. Vasopressin signaling at brain level controls stress hormone release: the vasopressin-deficient Brattleboro rat as a model. Amino Acids 47, 2245–2253 (2015). https://doi.org/10.1007/s00726-015-2026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2026-x

Keywords

Navigation