Skip to main content
Log in

Homoarginine in the shadow of asymmetric dimethylarginine: from nitric oxide to cardiovascular disease

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

It is well known that the endothelium maintains the vascular homeostasis. Importantly, endothelial dysfunction is regarded as a key early step in the development of atherosclerosis. Back in the early 1990s, it was found that asymmetric dimethylarginine (ADMA), an arginine metabolite derived from l-arginine (Arg) residues in proteins by asymmetric dimethylation on its guanidine group, is an endogenous inhibitor of nitric oxide (NO) synthase (NOS) isoforms. Inhibition of NO synthesis from Arg by the endothelial NOS isoform (eNOS) leads to endothelial dysfunction. Due to this action, ADMA participates in the pathophysiology of atherosclerosis and potentially contributes to cardiovascular events. Nowadays, homoarginine (hArg) is considered as a new key player in atherogenesis. hArg is a non-essential, non-proteinogenic amino acid which is synthesized from Arg by arginine:glycine amidinotransferase (AGAT). hArg is structurally related to Arg; formally, hArg is by one methylene (CH2) group longer than Arg, and may serve as a substrate for NOS, thus contributing to NO synthesis. For several decades, the pathophysiological role of hArg has been entirely unknown. hArg has been in the shadow of ADMA. Clinical studies have sought to investigate the relationship between circulating hArg levels and human disease states as well as cardiovascular prognosis. Recent studies indicate that hArg is actively involved in the vascular homeostasis, yet the underlying mechanisms are incompletely understood. In this article, we review the available literature regarding the role of ADMA and hArg in endothelial dysfunction and in cardiovascular disease as well as the possible associations between these endogenous Arg derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

AGAT:

Arginineglycine amidinotransferase

CAD:

Coronary artery disease

CVD:

Cardiovascular disease

DDAH:

Dimethylarginine dimethylaminohydrolase

FMD:

Flow-mediated dilatation

GAMT:

Guanidinoacetate methyltransferase

hArg:

Homoarginine

IMT:

Intima-media thickness

MMA:

Monomethylarginine

NO:

Nitric oxide

NOS:

NO synthase

eNOS:

Endothelial nitric oxide synthase

nNOS:

Neuronal nitric oxide synthase

PCI:

Percutaneous coronary intervention

PRMTs:

Protein arginine N-methyltransferases

ROS:

Reactive oxygen species

SDMA:

Symmetric dimethylarginine

References

  • Achan V, Broadhead M, Malaki M et al (2003) Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 23:1455–1459

    Article  CAS  PubMed  Google Scholar 

  • Antoniades C, Tousoulis D, Marinou K et al (2006) Asymmetrical dimethylarginine regulates endothelial function in methionine-induced but not in chronic homocystinemia in humans: effect of oxidative stress and proinflammatory cytokines. Am J Clin Nutr 84:781–788

    CAS  PubMed  Google Scholar 

  • Atzler D, Rosenberg M, Anderssohn M et al (2013) Homoarginine–an independent marker of mortality in heart failure. Int J Cardiol 168:4907–4909

    Article  PubMed  Google Scholar 

  • Atzler D, Gore MO, Ayers CR et al (2014) Homoarginine and cardiovascular outcome in the population-based Dallas Heart Study. Arterioscler Thromb Vasc Biol 34:2501–2507

    Article  CAS  PubMed  Google Scholar 

  • Böger RH (2003) The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 59:824–833

    Article  PubMed  Google Scholar 

  • Böger RH (2005) Asymmetric dimethylarginine (ADMA) and cardiovascular disease: insights from prospective clinical trials. Vasc Med 10(Suppl 1):S19–S25

    Article  PubMed  Google Scholar 

  • Böger RH, Sydow K, Borlak J et al (2000) LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res 87:99–105

    Article  PubMed  Google Scholar 

  • Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    Article  CAS  PubMed  Google Scholar 

  • Bulau P, Zakrzewicz D, Kitowska K et al (2007) Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am J Physiol Lung Cell Mol Physiol 2007(292):L18–L24

    Google Scholar 

  • Cavusoglu E, Ruwende C, Chopra V et al (2009) Relationship of baseline plasma ADMA levels to cardiovascular outcomes at 2 years in men with acute coronary syndrome referred for coronary angiography. Coron Artery Dis 20:112–117

    Article  PubMed  Google Scholar 

  • Chen PY, Sanders PW (1993) Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats. Hypertension 22:812–818

    Article  CAS  PubMed  Google Scholar 

  • Choe CU, Atzler D, Wild PS et al (2013) Homoarginine levels are regulated by l-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Davids M, Ndika JD, Salomons GS, Blom HJ, Teerlink T (2012) Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 586:3653–3657

    Article  CAS  PubMed  Google Scholar 

  • Drechsler C, Kollerits B, Meinitzer A et al (2013) Homoarginine and progression of chronic kidney disease: results from the Mild to Moderate Kidney Disease Study. PLoS One 8:e63560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fard A, Tuck CH, Donis JA et al (2000) Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 20:2039–2044

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara N, Osanai T, Kamada T et al (2000) Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension:modulation of nitric oxide synthesis by salt intake. Circulation 101:856–861

    Article  CAS  PubMed  Google Scholar 

  • Furuki K, Adachi H, Matsuoka H et al (2007) Plasma levels of asymmetric dimethylarginine (ADMA) are related to intima-media thickness of the carotid artery: an epidemiological study. Atherosclerosis 191:206–210

    Article  CAS  PubMed  Google Scholar 

  • Guzik TJ, Sadowski J, Kapelak B et al (2004) Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins. Arterioscler Thromb Vasc Biol 24:1614–1620

    Article  CAS  PubMed  Google Scholar 

  • Hori T, Matsubara T, Ishibashi T et al (2003) Significance of asymmetric dimethylarginine (ADMA) concentrations during coronary circulation in patients with vasospastic angina. Circ J 67:305–311

    Article  CAS  PubMed  Google Scholar 

  • Huynh NN, Chin-Dusting J (2006) Amino acids, arginase and nitric oxide in vascular health. Clin Exp Pharmacol Physiol 33:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Tsao PS, Adimoolam S et al (1999) Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 99:3092–3095

    Article  CAS  PubMed  Google Scholar 

  • Jaźwińska-Kozuba A, Martens-Lobenhoffer J, Kruszelnicka O et al (2013) Opposite associations of plasma homoarginine and ornithine with arginine in healthy children and adolescents. Int J Mol Sci 14:21819–21832

    Article  PubMed  Google Scholar 

  • Juonala M, Viikari JS, Alfthan G et al (2007) Brachial artery flowmediated dilation and asymmetrical dimethylarginine in the cardiovascular risk in young Finns study. Circulation 116:1367–1373

    Article  PubMed  Google Scholar 

  • Kaito K, Otsubo H, Usui N et al (2005) Platelet size deviation width, platelet large cell ratio, and mean platelet volume have sufficient sensitivity and specificity in the diagnosis of immune thrombocytopenia. Br J Haematol 128:698–702

    Article  PubMed  Google Scholar 

  • Kayacelebi AA, Pham VV, Willers J et al (2014a) Plasma homoarginine (hArg) and asymmetric dimethylarginine (ADMA) in patients with rheumatoid arthritis: is homoarginine a cardiovascular corrective in rheumatoid arthritis, an anti-ADMA? Int J Cardiol 176:1129–1131

    Article  PubMed  Google Scholar 

  • Kayacelebi AA, Nguyen TH, Neil C, Horowitz JD, Jordan J, Tsikas D (2014b) Homoarginine and 3-nitrotyrosine in patients with Takotsubo cardiomyopathy. Int J Cardiol 173:546–547

    Article  PubMed  Google Scholar 

  • Kielstein A, Tsikas D, Galloway GP, Mendelson JE (2007) Asymmetric dimethylarginine (ADMA)–a modulator of nociception in opiate tolerance and addiction? Nitric Oxide 17:55–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleber ME, Seppälä I, Pilz S et al (2013) Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the Athero Remo Consortium. Circ Cardiovasc Genet 6:505–513

    Article  CAS  PubMed  Google Scholar 

  • Krempl TK, Maas R, Sydow K, Meinertz T, Böger RH, Kahler J (2005) Elevation of asymmetric dimethylarginine in patients with unstable angina and recurrent cardiovascular events. Eur Heart J 26:1846–1851

    Article  CAS  PubMed  Google Scholar 

  • Krzyzanowska K, Mittermayer F, Wolzt M, Schernthaner G (2007) Asymmetric dimethylarginine predicts cardiovascular events in patients with type 2 diabetes. Diabetes Care 30:1834–1839

    Article  CAS  PubMed  Google Scholar 

  • Leiper JM, Santa Maria J, Chubb A et al (1999) Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J 343:209–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenzen H, Tsikas D, Böger RH (2006) Asymmetric dimethylarginine (ADMA) and the risk for coronary heart disease: the multicenter CARDIAC Study. Eur J Clin Pharmacol 62(Suppl 1):45–49

    Article  CAS  Google Scholar 

  • Leong T, Zylberstein D, Graham I et al (2008) Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 28:961–967

    Article  CAS  PubMed  Google Scholar 

  • Lu TM, Ding YA, Lin SJ, Lee WS, Tai HC (2003a) Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur Heart J 24:1912–1919

    Article  CAS  PubMed  Google Scholar 

  • Lu TM, Ding YA, Charng MJ, Lin SJ (2003b) Asymmetrical dimethylarginine: a novel risk factor for coronary artery disease. Clin Cardiol 26:458–464

    Article  PubMed  Google Scholar 

  • Maas R, Quitzau K, Schwedhelm E et al (2007) Asymmetrical dimethylarginine (ADMA) and coronary endothelial function in patients with coronary artery disease and mild hypercholesterolemia. Atherosclerosis 191:211–219

    Article  CAS  PubMed  Google Scholar 

  • März W, Meinitzer A, Drechsler C et al (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975

    Article  PubMed  Google Scholar 

  • Meinitzer A, Seelhorst U, Wellnitz B et al (2007) Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health Study). Clin Chem 53:273–283

    Article  CAS  PubMed  Google Scholar 

  • Michel T (2013) R is for arginine: metabolism of arginine takes off again, in new directions. Circulation 128:1400–1404

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittermayer F, Krzyzanowska K, Exner M et al (2006) Asymmetric dimethylarginine predicts major adverse cardiovascular events in patients with advanced peripheral artery disease. Arterioscler Thromb Vasc Biol 26:2536–2540

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Matsuoka H, Cooke JP et al (1999) Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 99:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Nicholls SJ, Wang Z, Koeth R et al (2007) Metabolic profiling of arginine and nitric oxide pathways predicts hemodynamic abnormalities and mortality in patients with cardiogenic shock after acute myocardial infarction. Circulation 116:2315–2324

    Article  CAS  PubMed  Google Scholar 

  • Perticone F, Sciacqua A, Maio R et al (2005) Asymmetric dimethylarginine, l-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 46:518–523

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Meinitzer A, Tomaschitz A et al (2011a) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Tomaschitz A, Meinitzer A et al (2011b) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42:1132–1134

    Article  CAS  PubMed  Google Scholar 

  • Pilz S, Edelmann F, Meinitzer A et al (2014) Associations of methylarginines and homoarginine with diastolic dysfunction and cardiovascular risk factors in patients with preserved left ventricular ejection fraction. J Card Fail 20:923–930

    Article  CAS  PubMed  Google Scholar 

  • Potena L, Fearon WF, Sydow K et al (2008) Asymmetric dimethylarginine and cardiac allograft vasculopathy progression: modulation by sirolimus. Transplantation 85:827–833

    Article  CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1990) An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci 87:5193–5197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis - an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  • Saarelainen H, Valtonen P, Punnonen K et al (2008) Subtle changes in ADMA and l-arginine concentrations in normal pregnancies are unlikely to account for pregnancy-related increased flow-mediated dilatation. Clin Physiol Funct Imaging 28:120–124

    Article  CAS  PubMed  Google Scholar 

  • Schnabel R, Blankenberg S, Lubos E et al (2005) Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res 97:e53–e59

    Article  CAS  PubMed  Google Scholar 

  • Schulze F, Lenzen H, Hanefeld C et al (2006) Asymmetric dimethylarginine is an independent risk factor for coronary heart disease: results from the multicenter Coronary Artery Risk Determination investigating the Influence of ADMA Concentration (CARDIAC) study. Am Heart J 152:493.e1–493.e8

    Article  Google Scholar 

  • Schwedhelm E, Wallaschofski H, Atzler D, et al. (2014) Incidence of all-cause and cardiovascular mortality predicted by symmetric dimethylarginine in the population-based study of health in Pomerania. PLoS One 9(5):e96875

  • Selcuk MT, Selcuk H, Temizhan A et al (2007) Asymmetric dimethylarginine plasma concentrations and l-arginine/asymmetric dimethylarginine ratio in patients with slow coronary flow. Coron Artery Dis 18:545–551

    Article  PubMed  Google Scholar 

  • Sobczak A, Prokopowicz A, Radek M et al (2014) Tobacco smoking decreases plasma concentration of the emerging cardiovascular risk marker, l-homoarginine. Circ J 78:1254–1258

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Koutsogiannis M, Papageorgiou N et al (2010) Endothelial dysfunction: potential clinical implications. Minerva Med 101:271–284

    CAS  PubMed  Google Scholar 

  • Tousoulis D, Bouras G, Antoniades C et al (2011a) Methionine-induced homocysteinemia impairs endothelial function in hypertensives: the role of asymmetrical dimethylarginine and antioxidant vitamins. Am J Hypertens 24:936–942

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Kampoli AM, Papageorgiou N et al (2011b) Pathophysiology of atherosclerosis: the role of inflammation. Curr Pharm Des 17:4089–4110

    Article  CAS  PubMed  Google Scholar 

  • Tousoulis D, Psaltopoulou T, Androulakis E et al (2015) Oxidative stress and early atherosclerosis: novel antioxidant treatment. Cardiovasc Drugs Ther 29:75–88

    Article  CAS  PubMed  Google Scholar 

  • Tran CT, Leiper JM, Vallance P (2003) The DDAH/ADMA/NOS pathway. Atheroscler Suppl 4:33–40

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Kayacelebi AA (2014) Do homoarginine and asymmetric dimethylarginine act antagonistically in the cardiovascular system? Circ J 78:2094–2095

    Article  PubMed  Google Scholar 

  • Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC (2000a) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 478:1–3

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Sandmann J, Savva A et al (2000b) Assessment of nitric oxide synthase activity in vitro and in vivo by gas chromatography-mass spectrometry. J Chromatogr 742:143–153

    Article  CAS  Google Scholar 

  • Valkonen VP, Paiva H, Salonen JT et al (2001) Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358:2127–2128

    Article  CAS  PubMed  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339:572–575

    Article  CAS  PubMed  Google Scholar 

  • Valtonen P, Laitinen T, Lyyra-Laitinen T et al (2008) Serum l-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ J 72:1879–1884

    Article  CAS  PubMed  Google Scholar 

  • van der Zwan LP, Davids M, Scheffer PG, Dekker JM, Stehouwer CD, Teerlink T (2013) l-Homoarginine and l-arginine are antagonistically related to blood pressure in an elderly population: the Hoorn Study. J Hypertens 31:1114–1123

    Article  PubMed  Google Scholar 

  • Vogl L, Pohlhammer J, Meinitzer A et al (2015) Serum concentrations of l-arginine and l-homoarginine in male patients with intermittent claudication: a cross-sectional and prospective investigation in the CAVASIC Study. Atherosclerosis 239:607–614

    Article  CAS  PubMed  Google Scholar 

  • Zoccali C, Bode-Böger S, Mallamaci F et al (2001) Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358:2113–2117

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human subjects or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Tousoulis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papageorgiou, N., Androulakis, E., Papaioannou, S. et al. Homoarginine in the shadow of asymmetric dimethylarginine: from nitric oxide to cardiovascular disease. Amino Acids 47, 1741–1750 (2015). https://doi.org/10.1007/s00726-015-2017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2017-y

Keywords

Navigation