Amino Acids

, Volume 47, Issue 9, pp 1817–1826 | Cite as

Association of homoarginine and methylarginines with liver dysfunction and mortality in chronic liver disease

  • Stefan PilzEmail author
  • Csilla Putz-Bankuti
  • Andreas Meinitzer
  • Winfried März
  • Katharina Kienreich
  • Tatjana Stojakovic
  • Thomas R. Pieber
  • Rudolf E. StauberEmail author
Original Article
Part of the following topical collections:
  1. Homoarginine, Arginine and Relatives


Previous studies on arginine metabolites reported an association of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) with liver dysfunction and an inverse relation of homoarginine (hArg) with cardiovascular risk. The aim of the present study was to investigate the relationships between hArg, ADMA, SDMA, and the dimethylarginine score (DAS, i.e., ADMA + SDMA) and liver dysfunction and survival in chronic liver disease. In 94 consecutive cirrhotic patients admitted to our outpatient liver clinic, serum levels of hArg, ADMA, and SDMA were measured by HPLC at baseline. Patients were followed with respect to mortality. In the entire study cohort (age 58.5 ± 11.2 years; 31 % females), the serum concentrations were 1.94 ± 0.90 µM for homoarginine, 0.90 ± 0.22 µM for ADMA, and 0.70 (0.60–0.93) µM for SDMA. ADMA correlated with both Child–Pugh and MELD scores, while SDMA, DAS, and hArg correlated with MELD score only. Thirty patients (32 %) died during a median follow-up of 3.5 years. Age- and sex-adjusted Cox proportional hazard ratios (HR) per µM (with 95 % confidence intervals) showed that hArg was associated with decreased mortality [HR 0.59 (0.37–0.96)], whereas mortality was increased in patients with higher ADMA [HR 3.78 (0.98–14.60)], SDMA [HR 6.54 (3.15–13.59)] and DAS [HR 4.13 (2.26–7.56)]. Only SDMA and DAS remained significantly associated with mortality after additional adjustments for either Child–Pugh stage or MELD score. In conclusion, in cirrhotic patients seen in an outpatient liver clinic, hArg as well as the dimethylarginines ADMA and SDMA was related to long-term mortality. In particular, SDMA predicts mortality independently of both Child–Pugh stage and MELD score.


ADMA SDMA Dimethylarginine score Homoarginine Amino acids Cirrhosis 



Asymmetric dimethylarginine


Arginine:glycine amidinotransferase


Analysis of variance


Coefficient of variation


Dimethylarginine score (i.e., ADMA + SDMA)


Dimethylarginine dimethylaminohydrolase




High-performance liquid chromatography


Hazard ratio


Model for end-stage liver disease


Nitric oxide


Protein arginine N-methyltransferase 1


Receiver operating characteristic


Symmetric dimethylarginine



This work was supported by BioPersMed (COMET K-project 825329), which is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economics and Labour/the Federal Ministry of Economy, Family and Youth (BMWA/BMWFJ), and the Styrian Business Promotion Agency (SFG). Katharina Kienreich was supported by funding from the Austrian National Bank (Jubilaeumsfonds: project number: 13905). The authors thank Hannelore Pock and Sabine Paulitsch for assistance with storage and measurements of blood samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study was approved by the local ethics committee.


  1. Atzler D, Gore MO, Ayers CR, Choe CU, Böger RH, de Lemos JA, McGuire DK, Schwedhelm E (2014) Homoarginine and cardiovascular outcome in the population based: Dallas Heart Study. Arterioscler Thromb Vasc Biol 34:2501–2507CrossRefPubMedGoogle Scholar
  2. Atzler D, Schwedhelm E, Choe CU (2015) l-homoarginine and cardiovascular disease. Curr Opin Clin Nutr Metab Care 18:83–88CrossRefPubMedGoogle Scholar
  3. Becker T, Mevius I, de Vries DK, Schaapherder AF, zu Vilsendorf AM, Klempnauer J, Frölich JC, Tsikas D (2009) The l-arginine/NO pathway in end-stage liver disease and during orthotopic liver and kidney transplantation: biological and analytical ramifications. Nitric Oxide 20:61–67CrossRefPubMedGoogle Scholar
  4. Bode-Böger SM, Scalera F, Kielstein JT, Martens-Lobenhoffer J, Breithardt G, Fobker M, Reinecke H (2006) Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol 17:1128–1134CrossRefPubMedGoogle Scholar
  5. Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS et al (2010) Genetic loci influencing kidney function and chronic kidney disease. Nat Genet 42:373–375PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, Miller LW, Birks EJ, Yacoub MH, Barton PJ (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–I20PubMedGoogle Scholar
  7. Drechsler C, Meinitzer A, Pilz S, Krane V, Tomaschitz A, Ritz E, März W, Wanner C (2011) Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur J Heart Fail 13:852–859PubMedCentralCrossRefPubMedGoogle Scholar
  8. Drechsler C, Kollerits B, Meinitzer A, März W, Ritz E, König P, Neyer U, Pilz S, Wanner C, Kronenberg F, MMKD Study Group (2013) Homoarginine and progression of chronic kidney disease: results from the mild to moderate kidney disease study. Plos One 8:e63560PubMedCentralCrossRefPubMedGoogle Scholar
  9. Karakurt F, Carlioglu A, Koktener A, Ozbek M, Kaya A, Uyar ME, Kasapoglu B, Ilhan A (2009) Relationship between cerebral arterial pulsatility and carotid intima media thickness in diabetic and non-diabetic patients with non-alcoholic fatty liver disease. J Endocrinol Invest 32:63–68CrossRefPubMedGoogle Scholar
  10. Kasumov T, Edmison JM, Dasarathy S, Bennett C, Lopez R, Kalhan SC (2011) Plasma levels of asymmetric dimethylarginine in patients with biopsy-proven nonalcoholic fatty liver disease. Metabolism 60:776–781PubMedCentralCrossRefPubMedGoogle Scholar
  11. Kayacelebi AA, Nguyen TH, Neil C, Horowitz JD, Jordan J, Tsikas D (2014) Homoarginine and 3-nitrotyrosine in patients with takotsubo cardiomyopathy. Int J Cardiol 173:546–547CrossRefPubMedGoogle Scholar
  12. Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M et al (2009) Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41:712–717PubMedCentralCrossRefPubMedGoogle Scholar
  13. Laleman W, Omasta A, Van de Casteele M, Zeegers M, Vander Elst I, Van Landeghem L, Severi T, van Pelt J, Roskams T, Fevery J, Nevens F (2005) A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis. Hepatology 42:1382–1390CrossRefPubMedGoogle Scholar
  14. Li J, Wilson A, Gao X, Liu Y, Poloyac S, Pitt B, Xie W, Li S (2009) Coordinated regulation of dimethylarginine dimethylaminohydrolase-1 and cationic amino acid transporter-1 by farnesoid X receptor in mouse liver and kidney and its implication in the control of blood levels of asymmetric dimethylarginine. J Pharmacol Exp Ther 331:234–243PubMedCentralCrossRefPubMedGoogle Scholar
  15. Lluch P, Torondel B, Medina P, Segarra G, Del Olmo JA, Serra MA, Rodrigo JM (2004) Plasma concentrations of nitric oxide and asymmetric dimethylarginine in human alcoholic cirrhosis. J Hepatol 41:55–59CrossRefPubMedGoogle Scholar
  16. Lluch P, Mauricio MD, Vila JM, Segarra G, Medina P, Del Olmo JA, Rodrigo JM, Serra MA (2006) Accumulation of symmetric dimethylarginine in hepatorenal syndrome. Exp Biol Med (Maywood) 231:70–75Google Scholar
  17. Marescau B, De Deyn PP, Holvoet J, Possemiers I, Nagels G, Saxena V, Mahler C (1995) Guanidino compounds in serum and urine of cirrhotic patients. Metabolism 44:584–588CrossRefPubMedGoogle Scholar
  18. Marescau B, Nagels G, Possemiers I, De Broe ME, Becaus I, Billiouw JM, Lornoy W, De Deyn PP (1997) Guanidino compounds in serum and urine of nondialyzed patients with chronic renal insufficiency. Metabolism 46:1024–1031CrossRefPubMedGoogle Scholar
  19. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, Wanner C (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975CrossRefPubMedGoogle Scholar
  20. Meinitzer A, Puchinger M, Winklhofer-Roob BM, Rock E, Ribalta J, Roob JM, Sundl I, Halwachs-Baumann G, März W (2007) Reference values for plasma concentrations of asymmetrical dimethylarginine (ADMA) and other arginine metabolites in men after validation of a chromatographic method. Clin Chim Acta 384:141–148CrossRefPubMedGoogle Scholar
  21. Meinitzer A, Drechsler C, Tomaschitz A, Pilz S, Krane V, Wanner C, März W (2011a) Homoarginine: a new cardiovascular risk marker in hemodialysis patients. Lab Med 35:153–159Google Scholar
  22. Meinitzer A, Kielstein JT, Pilz S, Drechsler C, Ritz E, Boehm BO, Winkelmann BR, März W (2011b) Symmetrical and asymmetrical dimethylarginine as predictors for mortality in patients referred for coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Clin Chem 57:112–121CrossRefPubMedGoogle Scholar
  23. Mookerjee RP, Malaki M, Davies NA, Hodges SJ, Dalton RN, Turner C, Sen S, Williams R, Leiper J, Vallance P, Jalan R (2007a) Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology 45:62–71CrossRefPubMedGoogle Scholar
  24. Mookerjee RP, Dalton RN, Davies NA, Hodges SJ, Turner C, Williams R, Jalan R (2007b) Inflammation is an important determinant of levels of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) in acute liver failure. Liver Transpl 13:400–405CrossRefPubMedGoogle Scholar
  25. Nijveldt RJ, Teerlink T, Van Der Hoven B, Siroen MP, Kuik DJ, Rauwerda JA, van Leeuwen PA (2003a) Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality. Clin Nutr 22:23–30CrossRefPubMedGoogle Scholar
  26. Nijveldt RJ, Teerlink T, Siroen MP, van Lambalgen AA, Rauwerda JA, van Leeuwen PA (2003b) The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA). Clin Nutr 22:17–22CrossRefPubMedGoogle Scholar
  27. Nijveldt RJ, Teerlink T, Siroen MP, van der Hoven B, Prins HA, Wiezer MJ, Meijer C, van der Sijp JR, Cuesta MA, Meijer S, van Leeuwen PA (2004) Elevation of asymmetric dimethylarginine (ADMA) in patients developing hepatic failure after major hepatectomy. JPEN J Parenter Enteral Nutr 28:382–387CrossRefPubMedGoogle Scholar
  28. Pilz S, Tomaschitz A, Meinitzer A, Drechsler C, Ritz E, Krane V, Wanner C, Bohm BO, März W (2011a) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42:1132–1134CrossRefPubMedGoogle Scholar
  29. Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V, Wanner C, Boehm BO, März W (2011b) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97:1222–1227CrossRefPubMedGoogle Scholar
  30. Pilz S, Meinitzer A, Tomaschitz A, Kienreich K, Fahrleitner-Pammer A, Drechsler C, Boehm BO, März W (2012) Homoarginine deficiency is associated with increased bone turnover. Osteoporos Int 23:2731–2732CrossRefPubMedGoogle Scholar
  31. Pilz S, Meinitzer A, Tomaschitz A, Kienreich K, Dobnig H, Schwarz M, Wagner D, Drechsler C, Piswanger-Sölkner C, März W, Fahrleitner-Pammer A (2013) Associations of homoarginine with bone metabolism and density, muscle strength and mortality: cross-sectional and prospective data from 506 female nursing home patients. Osteoporos Int 24:377–381CrossRefPubMedGoogle Scholar
  32. Pilz S, Teerlink T, Scheffer PG, Meinitzer A, Rutters F, Tomaschitz A, Drechsler C, Kienreich K, Nijpels G, Stehouwer CD, März W, Dekker JM (2014) Homoarginine and mortality in an older population: the Hoorn study. Eur J Clin Invest 44:200–208CrossRefPubMedGoogle Scholar
  33. Richir MC, Bouwman RH, Teerlink T, Siroen MP, de Vries TP, van Leeuwen PA (2008) The prominent role of the liver in the elimination of asymmetric dimethylarginine (ADMA) and the consequences of impaired hepatic function. JPEN J Parenter Enteral Nutr 32:613–621CrossRefPubMedGoogle Scholar
  34. Rufo MB, Fishman WH (1972) l-Homoarginine, a specific inhibitor of liver-type alkaline phosphatase, applied to the recognition of liver-type enzyme activity in rat intestine. J Histochem Cytochem 20:336–343CrossRefPubMedGoogle Scholar
  35. Ryan WL, Wells IC (1964) Homocitrulline and homoarginine synthesis from lysine. Science 144:1122–1127CrossRefPubMedGoogle Scholar
  36. Siroen MP, Warlé MC, Teerlink T, Nijveldt RJ, Kuipers EJ, Metselaar HJ, Tilanus HW, Kuik DJ, van der Sijp JR, Meijer S, van der Hoven B, van Leeuwen PA (2004) The transplanted liver graft is capable of clearing asymmetric dimethylarginine. Liver Transpl 10:1524–1530CrossRefPubMedGoogle Scholar
  37. Siroen MP, van der Sijp JR, Teerlink T, van Schaik C, Nijveldt RJ, van Leeuwen PA (2005) The human liver clears both asymmetric and symmetric dimethylarginine. Hepatology 41:559–565CrossRefPubMedGoogle Scholar
  38. Teerlink T, Nijveldt RJ, de Jong S, van Leeuwen PA (2002) Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal Biochem 303:131–137CrossRefPubMedGoogle Scholar
  39. Tsikas D, Kayacelebi AA (2014) Do Homoarginine and asymmetric dimethylarginine act antagonistically in the cardiovascular system? Circ J 78:2094–2095CrossRefPubMedGoogle Scholar
  40. Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC (2000a) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 478:1–3CrossRefPubMedGoogle Scholar
  41. Tsikas D, Sandmann J, Savva A, Luessen P, Böger RH, Gutzki FM, Mayer B, Frölich JC (2000b) Assessment of nitric oxide synthase activity in vitro and in vivo by gas chromatography-mass spectrometry. J Chromatogr B 742:143–153CrossRefGoogle Scholar
  42. Tsikas D, Rode I, Becker T, Nashan B, Klempnauer J, Frölich JC (2003) Elevated plasma and urine levels of ADMA and 15(S)-8-iso-PGF2alpha in end-stage liver disease. Hepatology 38:1063–1064PubMedGoogle Scholar
  43. Tsikas D, Thum T, Becker T, Pham VV, Chobanyan K, Mitschke A, Beckmann B, Gutzki FM, Bauersachs J, Stichtenoth DO (2007) Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J Chromatogr B 851:229–239CrossRefGoogle Scholar
  44. Valtonen P, Laitinen T, Lyyra-Laitinen T, Raitakari OT, Juonala M, Viikari JS, Heiskanen N, Vanninen E, Punnonen K, Heinonen S (2008) Serum l-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ J 72:1879–1884CrossRefPubMedGoogle Scholar
  45. van der Zwan LP, Davids M, Scheffer PG, Dekker JM, Stehouwer CD, Teerlink T (2013) l-Homoarginine and l-arginine are antagonistically related to blood pressure in an elderly population: the Hoorn study. J Hypertens 31:1114–1123CrossRefPubMedGoogle Scholar
  46. Vizzutti F, Romanelli RG, Arena U, Rega L, Brogi M, Calabresi C, Masini E, Tarquini R, Zipoli M, Boddi V, Marra F, Laffi G, Pinzani M (2007) ADMA correlates with portal pressure in patients with compensated cirrhosis. Eur J Clin Invest 37:509–515CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Stefan Pilz
    • 1
    Email author
  • Csilla Putz-Bankuti
    • 2
    • 3
  • Andreas Meinitzer
    • 4
  • Winfried März
    • 4
    • 5
  • Katharina Kienreich
    • 1
  • Tatjana Stojakovic
    • 4
  • Thomas R. Pieber
    • 1
  • Rudolf E. Stauber
    • 3
    Email author
  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineMedical University of GrazGrazAustria
  2. 2.Department of Internal MedicineLandeskrankenhaus Hörgas-EnzenbachGratweinAustria
  3. 3.Division of Gastroenterology and Hepatology, Department of Internal MedicineMedical University of GrazGrazAustria
  4. 4.Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
  5. 5.Synlab Academy, Synlab Services GmbHMannheimGermany

Personalised recommendations