Skip to main content
Log in

Mitochondrial transporters for ornithine and related amino acids: a review

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and SLC25A29 from Homo sapiens, BAC1 and BAC2 from Arabidopsis thaliana, and Ort1p from Saccharomyces cerevisiae have been biochemically characterized by transport assays in liposomes. All of them transport ornithine and amino acids with side chains terminating at least with one amine. There are, however, marked differences in their substrate specificities including their affinity for ornithine (KM values in the mM to μM range). These differences are most likely reflected by minor differences in the substrate binding sites of these carriers. The physiological role of the above-mentioned mitochondrial carriers is to link several metabolic pathways that take place partly in the cytosol and partly in the mitochondrial matrix and to provide basic amino acids for mitochondrial translation. In the liver, human ORC1 catalyzes the citrulline/ornithine exchange across the mitochondrial inner membrane, which is required for the urea cycle. Human ORC1, ORC2, and SLC25A29 are likely to be involved in the biosynthesis and transport of arginine, which can be used as a precursor for the synthesis of NO, agmatine, polyamines, creatine, glutamine, glutamate, and proline, as well as in the degradation of basic amino acids. BAC1 and BAC2 are implicated in some processes similar to those of their human counterparts and in nitrogen and amino acid metabolism linked to stress conditions and the development of plants. Ort1p is involved in the biosynthesis of arginine and polyamines in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC1:

Basic amino acid carrier 1

BAC2:

Basic amino acid carrier 2

HHH:

Hyperornithinemia-hyperammonemia-homocitrullinuria

MC:

Mitochondrial carrier

NO:

Nitric oxide

NOS:

NO synthase

ORC1:

Ornithine carrier 1

ORC2:

Ornithine carrier 2

SLC25A29:

Member 29 of the SLC25 protein family

References

  • Agrimi G, Di Noia MA, Marobbio CMT, Fiermonte G, Lasorsa FM, Palmieri F (2004) Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem J 379:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agrimi G, Russo A, Pierri CL, Palmieri F (2012) The peroxisomal NAD(+) carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. J Bioenerg Biomembr 44:333–340

    Article  CAS  PubMed  Google Scholar 

  • Al-Hassnan ZN, Rashed MS, Al-Dirbashi OY, Patay Z, Rahbeeni Z, Abu-Amero KK (2008) Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. J Neurol Sci 264:187–194

    Article  CAS  PubMed  Google Scholar 

  • Alpoim PN, Sousa LP, Mota AP, Rios DR, Dusse LM (2015) Asymmetric Dimethylarginine (ADMA) in cardiovascular and renal disease. Clin Chim Acta 440:36–39

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Hayashi M, Nishimura M (2008) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. Plant Cell 20:3227–3240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rébeillé F, Ravanel S (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280:34823–34831

    Article  CAS  PubMed  Google Scholar 

  • Blemings KP, Crenshaw TD, Swick RW, Benevenga NJ (1994) Lysine-alpha-ketoglutarate reductase and saccharopine dehydrogenase are located only in the mitochondrial matrix in rat liver. J Nutr 124:1215–1221

    CAS  PubMed  Google Scholar 

  • Bouvier F, Linka N, Isner JC, Mutterer J, Weber APM, Camara B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. Plant Cell 18:3088–3105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camacho J (2003) Cloning and characterization of human ORNT2: a second mitochondrial ornithine transporter that can rescue a defective ORNT1 in patients with the hyperornithinemia–hyperammonemia–homocitrullinuria syndrome, a urea cycle disorder. Mol Genet Metab 79:257–271

    Article  CAS  PubMed  Google Scholar 

  • Camacho J, Rioseco-Camacho N (2009) The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Pediatr Res 66:35–41

    Article  CAS  PubMed  Google Scholar 

  • Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA et al (1999) Hyperornithinaemia- syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158

    Article  CAS  PubMed  Google Scholar 

  • Catoni E, Desimone M, Hilpert M, Wipf D, Kunze R, Schneider A, Flügge UI, Schumacher K, Frommer WB (2003) Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis. BMC Plant Biol 3:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Chappell JB, McGivan JD, Crompton M (1972) The molecular basis of biological transport. In: Woessner JFJ, Huijing F (eds) The molecular basis of biological transport. Academic Press, London, pp 55–81

    Chapter  Google Scholar 

  • Crabeel M, Soetens O, De Rijcke M, Pratiwi R, Pankiewicz R (1996) The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis. J Biol Chem 271:25011–25018

    Article  CAS  PubMed  Google Scholar 

  • Di Noia MA, Todisco S, Cirigliano A, Rinaldi T, Agrimi G, Iacobazzi V, Palmieri F (2014) The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J Biol Chem 289:33137–33148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ersoy Tunalı N, Marobbio CMT, Tiryakioğlu NO, Punzi G, Saygılı SK, Onal H, Palmieri F (2014) A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol Genet Metab 112:25–29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiermonte G, Palmieri L, Todisco S, Agrimi G, Palmieri F, Walker JE (2002) Identification of the mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 277:19289–19294

    Article  CAS  PubMed  Google Scholar 

  • Fiermonte G, Dolce V, David L, Santorelli FM, Dionisi-Vici C, Palmieri F, Walker JE (2003) The mitochondrial ornithine transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 278:32778–32783

    Article  CAS  PubMed  Google Scholar 

  • Fukao Y, Hayashi Y, Mano S, Hayashi M, Nishimura M (2001) Developmental analysis of a putative ATP/ADP carrier protein localized on glyoxysomal membranes during the peroxisome transition in pumpkin cotyledons. Plant Cell Physiol 42:835–841

    Article  CAS  PubMed  Google Scholar 

  • Galea E, Regunathan S, Eliopoulos V, Feinstein DL (1996) Reis DJ (1996) Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J 316:247–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghafourifar P, Cadenas E (2005) Mitochondrial nitric oxide synthase. Trends Pharmacol Sci 26:190–195

    Article  CAS  PubMed  Google Scholar 

  • Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED (2005) Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol 396:424–444

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • Herzfeld A, Mezl VA, Knox WE (1977) Enzymes metabolizing delta1-pyrroline-5-carboxylate in rat tissues. Biochem J 166:95–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2003) The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett 549:26–30

    Article  CAS  PubMed  Google Scholar 

  • Indiveri C, Krämer R, Palmieri F (1987) Reconstitution of the malate/aspartate shuttle from mitochondria. J Biol Chem 262:15979–15983

    CAS  PubMed  Google Scholar 

  • Indiveri C, Tonazzi A, Palmieri F (1992) Identification and purification of the ornithine/citrulline carrier from rat liver mitochondria. Eur J Biochem 207:449–454

    Article  CAS  PubMed  Google Scholar 

  • Indiveri C, Palmieri L, Palmieri F (1994) Kinetic characterization of the reconstituted ornithine carrier from rat liver mitochondria. Biochim Biophys Acta 1188:293–301

    Article  PubMed  Google Scholar 

  • Indiveri C, Tonazzi A, Stipani I, Palmieri F (1997) The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H + translocation. Biochem J 327:349–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Indiveri C, Tonazzi A, Stipani I, Palmieri F (1999) The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria catalyses a second transport mode: orhithine +/H + exchange. Biochem J 711:705–711

    Google Scholar 

  • Indiveri C, Tonazzi A, De Palma A, Palmieri F (2001) Kinetic mechanism of antiports catalyzed by reconstituted ornithine/citrulline carrier from rat liver mitochondria. Biochim Biophys Acta 1503:303–313

    Article  CAS  PubMed  Google Scholar 

  • Kirchberger S, Tjaden J, Neuhaus HE (2008) Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. Plant J 56:51–63

    Article  CAS  PubMed  Google Scholar 

  • Kleber ME, Seppälä I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, Raitoharju E, Lyytikäinen LP, Mäkelä KM, Laaksonen R et al (2013) Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circ Cardiovasc Genet 6:505–513

    Article  CAS  PubMed  Google Scholar 

  • Kleinert H, Schwarz PM, Förstermann U (2003) Regulation of the expression of inducible nitric oxide synthase. Biol Chem 384:1343–1364

    Article  CAS  PubMed  Google Scholar 

  • Kopyra M, Gwozdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Leroch M, Neuhaus HE, Kirchberger S, Zimmermann S, Melzer M, Gerhold J, Tjaden J (2008) Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:438–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim HK, Lim HK, Ryoo S, Benjo A, Shuleri K, Miriel V, Baraban E, Camara A, Soucy K, Nyhan D, Shoukas A, Berkowitz DE (2007) Mitochondrial arginase II constrains endothelial NOS-3 activity. Am J Physiol Heart Circ Physiol 293:H3317–H3324

    Article  CAS  PubMed  Google Scholar 

  • Linka M, Weber AP (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci 10:461–465

    Article  CAS  PubMed  Google Scholar 

  • Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber APM (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E (2015) Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 6:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Ludwig RA (1993) Arabidopsis chloroplasts dissimilate l-arginine and L-citrulline for use as N source. Plant Physiol 101:429–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252

    Article  CAS  PubMed  Google Scholar 

  • Marobbio CMT, Agrimi G, Lasorsa FM, Palmieri F (2003) Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine. EMBO J 22:5975–5982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marobbio CMT, Punzi G, Pierri CL, Palmieri L, Calvello R, Panaro MA, Palmieri F (2015) Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Mol Genet Metab 115:27–32

    Article  CAS  PubMed  Google Scholar 

  • Martinelli D, Diodato D, Ponzi E, Monné M, Boenzi S, Bertini E, Fiermonte G, Dionisi-Vici C (2015) The hyperornithinemia–hyperammonemia-homocitrullinuria syndrome. Orphanet J Rare Dis 10:29

    Article  PubMed Central  PubMed  Google Scholar 

  • März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E et al (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975

    Article  PubMed  Google Scholar 

  • McGuire DM, Gross MD, Elde RP, van Pilsum JF (1986) Localization of l-arginine-glycine amidinotransferase protein in rat tissues by immunofluorescence microscopy. J Histochem Cytochem 34:429–435

    Article  CAS  PubMed  Google Scholar 

  • Mestichelli LJ, Gupta RN, Spenser ID (1979) The biosynthetic route from ornithine to proline. J Biol Chem 254:640–647

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Kanazawa N, Kato S, Kawakami M, Inoue Y, Kuhara T, Inoue T, Takeshita K, Tsujino S (2001) Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Human Genet 46:260–262

    Article  CAS  Google Scholar 

  • Miyamoto T, Kanazawa N, Hayakawa C, Tsujino S (2002) A novel mutation, P126R, in a Japanese patient with HHH syndrome. Pediatr Neurrol 26:65–67

    Article  Google Scholar 

  • Moali C, Boucher JL, Sari MA, Stuehr DJ, Mansuy D (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine. Biochemistry 37:10453–10460

    Article  CAS  PubMed  Google Scholar 

  • Monné M, Palmieri F (2014) Antiporters of the mitochondrial carrier family. Curr Top Membr 73:289–320

    Article  PubMed  CAS  Google Scholar 

  • Monné M, Miniero DV, Daddabbo L, Robinson AJ, Kunji ERS, Palmieri F (2012) Substrate specificity of the two mitochondrial ornithine carriers can be swapped by single mutation in substrate binding site. J Biol Chem 287:7925–7934

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Monné M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G (2013a) The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr 45:1–13

    Article  PubMed  CAS  Google Scholar 

  • Monné M, Palmieri F, Kunji ERS (2013b) The substrate specificity of mitochondrial carriers: mutagenesis revisited. Mol Membr Biol 30:149–159

    Article  PubMed  Google Scholar 

  • Morris ML, Lee SC, Harper AE (1972) Influence of differential induction of histidine catabolic enzymes on histidine degradation in vivo. J Biol Chem 247:5793–5804

    CAS  PubMed  Google Scholar 

  • Morrissey J, McCracken R, Ishidoya S, Klahr S (1995) Partial cloning and characterization of an arginine decarboxylase in the kidney. Kidney Int 47:1458–1461

    Article  CAS  PubMed  Google Scholar 

  • Nury H, Dahout-Gonzalez C, Trézéguet V, Lauquin G, Brandolin G, Pebay-Peyroula E (2005) Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 579:6031–6036

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 346:48–54

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflügers Arch 447:689–709

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777:564–578

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34:465–484

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Pierri CL (2010a) Mitochondrial metabolite transport. Essays Biochem 47:37–52

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Pierri CL (2010b) Structure and function of mitochondrial carriers - role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett 584:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, De Marco V, Iacobazzi V, Palmieri F, Runswick MJ, Walker JE (1997) Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett 410:447–451

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Lasorsa FM, Vozza A, Agrimi G, Fiermonte G, Runswick MJ, Walker JE, Palmieri F (2000) Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta 1459:363–369

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrústegui et al (2001a) Citrin and aralar1 are Ca(2 +)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001b) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P et al (2006a) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757:1249–1262

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Todd CD, Arrigoni R, Hoyos ME, Santoro A, Polacco JC, Palmieri F (2006b) Arabidopsis mitochondria have two basic amino acid transporters with partially overlapping specificities and differential expression in seedling development. Biochim Biophys Acta 1757:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, Trauth AU, Fiermonte G, Tjaden J, Agrimi G et al (2009) Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD + carrier proteins. J Biol Chem 284:31249–31259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181

    Article  CAS  PubMed  Google Scholar 

  • Papes F, Kemper EL, Cord-Neto G, Langone F, Arruda P (1999) Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochem J 344:555–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJM, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    Article  CAS  PubMed  Google Scholar 

  • Planchais S, Cabassa C, Toka I, Justin AM, Renou JP, Savouré A, Carol P (2014) BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves. Front Plant Sci 5:330

    Article  PubMed Central  PubMed  Google Scholar 

  • Porcelli V, Fiermonte G, Longo A, Palmieri F (2014) The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 289:13374–13384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Robinson AJ, Kunji ERS (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci USA 103:2617–2622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ERS (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci USA 111:E426–E434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryoo S, Gupta G, Benjo A, Lim HK, Camara A, Sikka G, Lim HK, Sohi J, Santhanam L, Soucy K, Tuday E, Baraban E, Ilies M, Gerstenblith G, Nyhan D, Shoukas A, Christianson DW, Alp NJ, Champion HC, Huso D, Berkowitz DE (2008) Endothelial arginase II A novel target for the treatment of atherosclerosis. Circ Res 102:923–932

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Dionisi-Vici C, Bertini E, Verardo M, Santorelli FM (2001) Seven novel mutations in the ORNT1 gene (SLC25A15) in patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Hum Mutat 18:460

    Article  CAS  PubMed  Google Scholar 

  • Saraste M, Walker JE (1982) Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett 144:250–254

    Article  CAS  PubMed  Google Scholar 

  • Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, Hayashi S, Blantz RC (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316

    Article  CAS  PubMed  Google Scholar 

  • Sekoguchi E, Sato N, Yasui A, Fukada S, Nimura Y, Aburatani H, Ikeda K, Matsuura A (2003) A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem 278:38796–38802

    Article  CAS  PubMed  Google Scholar 

  • Shargool PD, Jain JC, McKay G (1988) Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry 27:1571–1574

    Article  CAS  Google Scholar 

  • Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774

    Article  CAS  PubMed  Google Scholar 

  • Shih VE, Efron ML, Moser HW (1969) Hyperornithinemia, hyperammonemia, and homocitrullinuria. A new disorder of amino acid metabolism associated with myoclonic seizures and mental retardation. Am J Dis Child 117:83–92

    Article  CAS  PubMed  Google Scholar 

  • Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tessa A, Fiermonte G, Dionisi-Vici C, Paradies E, Baumgartner MR, Chien YH, Loguercio C, de Baulny HO, Nassogne MC, Schiff M et al (2009) Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 30:741–748

    Article  CAS  PubMed  Google Scholar 

  • Thompson JF (1980) Arginine synthesis, proline synthesis, and related processes. In: Miflin BJ (ed) The Biochemistry of Plants, vol 5. Academic Press, New York, pp 375–403

    Google Scholar 

  • Thuswaldner S, Lagerstedt JO, Rojas-Stütz M, Bouhidel K, Der C, Leborgne-Castel N, Mishra A, Marty F, Schoefs B, Adamska I et al (2007) Identification, expression, and functional analyses of a thylakoid ATP/ADP carrier from Arabidopsis. J Biol Chem 282:8848–8859

    Article  CAS  PubMed  Google Scholar 

  • Todisco S, Di Noia MA, Castegna A, Lasorsa FM, Paradies E, Palmieri F (2014) The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine 5′-phosphosulfate and 3′-phospho-adenosine 5′-phosphosulfate. Biochim Biophys Acta 1837:326–334

    Article  CAS  PubMed  Google Scholar 

  • Toka I, Planchais S, Cabassa C, Justin AM, De Vos D, Richard L, Savouré A, Carol P (2010) Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER 2 enhance proline accumulation in Arabidopsis. Plant Physiol 152:1851–1862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomaschitz A, Meinitzer A, Pilz S, Rus-Machan J, Genser B, Drechsler C, Grammer T, Krane V, Ritz E, Kleber ME et al (2014) Homoarginine, kidney function and cardiovascular mortality risk. Nephrol Dial Transplant 29:663–671

    Article  CAS  PubMed  Google Scholar 

  • Tonazzi A, Giangregorio N, Palmieri F, Indiveri C (2005) Relationships of Cysteine and Lysine residues with the substrate binding site of the mitochondrial ornithine/citrulline carrier: an inhibition kinetic approach combined with the analysis of the homology structural model. Biochim Biophys Acta 1718:53–60

    Article  CAS  PubMed  Google Scholar 

  • Tsujino S, Kanazawa N, Ohashi T, Eto Y, Saito T, Kira J, Yamada T (2000) Three novel mutations (G27E, insAAC, R179X) in the ORNT1 gene of Japanese patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Ann Neurol 47:625–631

    Article  CAS  PubMed  Google Scholar 

  • Valle D, Simell O (2001) The hyperornithinemias. In: Beaudet AL, Sly WS, Valle D (eds) Scriver CR. The metabolic and molecular basis of inherited disease, New York, pp 1909–1964

    Google Scholar 

  • Venekamp JH, Lampe JEM, Koot JTM (1989) Organic acids as sources or drought-induced proline synthesis in field bean plants, Vicia faba L. J Plant Physiol 133:654–659

    Article  CAS  Google Scholar 

  • Verma DPS, Zhang CS (1999) Regulation of proline and arginine biosynthesis in plants. In: Singh BK (ed) Plant amino acids: Biochemistry and biotechnology. Marcel Dekker, New York, pp 249–265

    Google Scholar 

  • Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D et al (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci USA 111:960–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Golledge J (2013) Neuronal nitric oxide synthase and sympathetic nerve activity in neurovascular and metabolic systems. Curr Neurovasc Res 10:81–89

    Article  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2013) Amino acids: Biochemistry and Nutrition. CRC Press, Taylor and Francis Group

    Book  Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministero dell’Università e della Ricerca (MIUR), the Comitato Telethon Fondazione Onlus n. GGP11139 and the Italian Human ProteomeNet no. RBRN07BMCT_009 (MIUR).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article is a review summarizing the results and conclusions of available publications that include previously performed studies on human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Palmieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monné, M., Miniero, D.V., Daddabbo, L. et al. Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids 47, 1763–1777 (2015). https://doi.org/10.1007/s00726-015-1990-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1990-5

Keywords

Navigation