Amino Acids

, Volume 47, Issue 7, pp 1433–1443 | Cite as

A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity

  • Paulo R. S. Sanches
  • Bruno M. Carneiro
  • Mariana N. Batista
  • Ana Cláudia S. Braga
  • Esteban N. Lorenzón
  • Paula Rahal
  • Eduardo Maffud CilliEmail author
Original Article


Conjugate compounds constitute a new class of molecules of important biological interest mainly for the treatment of diseases such as cancer. The N-terminus region of cationic peptides has been described as important for their biological activity. The aim of this study was to evaluate the lytic peptide Hecate (FALALKALKKALKKLKKALKKAL) and the effect of conjugating this macromolecule with gallic acid (C7H6O5) in terms of structure, anti-cancer activity, and toxicity. An N-terminus GA-Hecate peptide conjugate was synthesized to provide information regarding the relationship between the amino-terminal region and its charge and the secondary structure and biological activity of the peptide; and the effects of gallic acid on these parameters. Peptide secondary structure was confirmed using circular dichroism (CD). The CD measurements showed that the peptide has a high incidence of α-helical structures in the presence of SDS and LPC, while GA-Hecate presented lower incidence of α-helical structures in the same chemical environment. An evaluation of the anti-cancer activity in HeLa cancer cells indicated that both peptides are active, but that coupling gallic acid at the N-terminus decreased the activity of the free peptide. GA-Hecate showed lower activity in non-tumor keratinocyte cells but higher hemolytic activity. Our findings suggest that the N-terminus of Hecate plays an important role in its activity against cervical cancer by affecting it secondary structure, toxicity, and hemolytic activity. This study highlights the importance of the N-terminus in antitumor activity and could provide an important tool for developing new anti-cancer drugs.


Hecate Gallic acid Bioconjugates Cervical cancer Hemolytic activity Secondary structure 



The authors are grateful to the Conselho Nacional de Desenvolvimento Científico (CNPq) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support.

Conflict of interest

The authors declare that they have no conflict of intrest.


  1. Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Valuation of antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885CrossRefGoogle Scholar
  2. Asnaashari M, Farhoosh R, Sharif A (2014) Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem 159:439–444. doi: 10.1016/j.foodchem.2014.03.038 PubMedCrossRefGoogle Scholar
  3. Baranska-Rybak W, Pikula M, Dawgul M, Kamysz W, Trzonkowski P, Roszkiewicz J (2013) Safety profile of antimicrobial peptides: camel, citropin, protegrin, temporin A and lipopeptide on HaCaT keratinocytes. Acta Pol Pharm 70:795–801PubMedGoogle Scholar
  4. Barr SC, Rose D, Jaynes JM (1995) Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J Parasitol 81:974–978PubMedCrossRefGoogle Scholar
  5. Barrajón-Catalán E, Menéndez-Gutiérrez MP, Falco A et al (2010) Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level. Cancer Lett 290:192–203. doi: 10.1016/j.canlet.2009.09.010 PubMedCrossRefGoogle Scholar
  6. Batista MN, Carneiro BM, Braga ACS, Rahal P (2014) Caffeine inhibits hepatitis C virus replication in vitro. Arch Virol. doi: 10.1007/s00705-014-2302-1
  7. Bernhaus A, Fritzer-Szekeres M, Grusch M et al (2009) Digalloylresveratrol, a new phenolic acid derivative induces apoptosis and cell cycle arrest in human HT-29 colon cancer cells. Cancer Lett 274:299–304. doi: 10.1016/j.canlet.2008.09.020 PubMedCrossRefGoogle Scholar
  8. Bodek G, Kowalczyk A, Waclawik A et al (2005) Targeted ablation of prostate carcinoma cells through LH receptor using hecate-CGβ conjugate: functional characteristic and molecular mechanism of cell death pathway. Exp Biol Med 230:421–428Google Scholar
  9. Buolamwini JK (1999) Novel anticancer drug discovery. Curr Opin Chem Biol 3:500–509PubMedCrossRefGoogle Scholar
  10. Castro MS, Cilli EM, Fontes W (2006) Combinatorial synthesis and directed evolution applied to the production of α-helix forming antimicrobial peptides analogues. Curr Protein Pep Sci 7:473–478Google Scholar
  11. Cespedes GF, Lorenzon EN, Vicente EF, Soares Mendes-Giannini MJ, Fontes W, Castro MS, Cilli EM (2012) Mechanism of action and relationship between structure and biological activity of Ctx-Ha: a new ceratotoxin-like peptide from Hypsiboas albopunctatus. Protein Pept Lett 19:596–603PubMedCrossRefGoogle Scholar
  12. Cilli EM, Pigossi FT, Crusca E et al (2007) Correlations between differences in amino-terminal sequences and different hemolytic activity of sticholysins. Toxicon 50:1201–1204. doi: 10.1016/j.toxicon.2007.07.013 PubMedCrossRefGoogle Scholar
  13. Cordova CAS, Locatelli C, Assunção LS et al (2011) Octyl and dodecyl gallates induce oxidative stress and apoptosis in a melanoma cell line. Toxicol Vitr 25:2025–2034. doi: 10.1016/j.tiv.2011.08.003 CrossRefGoogle Scholar
  14. Crusca E, Rezende AA, Marchetto R et al (2011) Influence of N-terminal modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers 96:41–48. doi: 10.1002/bip.21454 PubMedCrossRefGoogle Scholar
  15. Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and hemolytic activity of amphipathic helical peptides. FEBS Lett 403:208–212PubMedCrossRefGoogle Scholar
  16. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701. doi: 10.1038/nrc1958 PubMedCrossRefGoogle Scholar
  17. Duval E, Zatylny C, Laurencin M, Baudy-Floc’h M, Henry J (2009) KKKKPLFGLFFGLF: a cationic peptide designed to exert antibacterial activity. Peptides 30:1608–1612PubMedCrossRefGoogle Scholar
  18. Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ferlay J, Shin H-R, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917PubMedCrossRefGoogle Scholar
  20. Fjell CD, Hiss JA, Hancock REW, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. doi: 10.1038/nrd3591 PubMedGoogle Scholar
  21. Gao X, Zhang X, Wang Y, Peng S, Fan C (2015) An in vitro study on the cytotoxicity of bismuth oxychloride nanosheets in human HaCaT keratinocytes. Food Chem Toxicol 80:52–61. doi: 10.1016/j.fct.2015.02.018
  22. Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides: a review. Front Microbiol. doi: 10.3389/fmicb.2013.00294
  23. Gawronska B, Leuschner C, Enrigh F, Hansel W (2002) Effects of a lytic peptide conjugated to β hCG on ovarian cancer: studies in vitro and in vivo. Gynecol Oncol 85:45–52PubMedCrossRefGoogle Scholar
  24. Golubeva OY, Shamova OV, Orlov DS et al (2011) Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics. Glass Phys Chem 37:78–84. doi: 10.1134/S1087659611010056 CrossRefGoogle Scholar
  25. Hansel W, Leuschner C, Gawronska B, Enright F (2001) Targeted destruction of prostate cancer cells and xenografts by lytic peptide-betaLH conjugates. Reprod Biol 1:20–32PubMedGoogle Scholar
  26. Hansel W, Enright F, Leuschner C (2007a) Destruction of breast cancers and their metastases by lytic peptide conjugates in vitro and in vivo. Mol Cell Endocrinol 260–262:183–189. doi: 10.1016/j.mce.2005.12.056 PubMedCrossRefGoogle Scholar
  27. Hansel W, Leuschner C, Enright F (2007b) Conjugates of lytic peptides and LHRH or βCG target and cause necrosis of prostate cancers and metastases. Mol Cell Endocrinol 269:26–33PubMedCrossRefGoogle Scholar
  28. Henk WG, Todd WJ, Enright FM, Mitchell PS (1995) The morphological effects of two antimicrobial peptides, hecate-1 and melittin, on Escherichia coli. Scan Microsc 9:501–507Google Scholar
  29. Hirata A, Nokihara K (2014) Construction of peptide-vehicles, bioconjugates having modules for cancer cell surface capture and cell-penetrating peptide with anticancer agents. Tetrahedron Lett 55:4091–4094. doi: 10.1016/j.tetlet.2014.05.086 CrossRefGoogle Scholar
  30. Ho H-H, Chang C-S, Ho W-C et al (2013) Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol Appl Pharmacol 266:76–85. doi: 10.1016/j.taap.2012.10.019 PubMedCrossRefGoogle Scholar
  31. Howl J (2005) Peptide synthesis and applications, vol 31. Humana Press, TotowaCrossRefGoogle Scholar
  32. Huang Y, Wang X, Wang H et al (2011) Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 10:416–426. doi: 10.1158/1535-7163.mct-10-0811 PubMedCrossRefGoogle Scholar
  33. Hudecz F (2005) Synthesis of peptide bioconjugates. Methods Mol Biol 298:209–223PubMedGoogle Scholar
  34. Hurtado C, Bustos MJ, Sabina P, Nogal ML, Granja AG, González ME, Gónzalez-Porqué P, Revilla Y, Carrascosa AL (2008) Antiviral activity of lauryl gallate against animal viruses. Antvir Ther 13:909–917Google Scholar
  35. Jamasbi E, Batinovic S, Sharples RA, Sani M-A, Robins-Browne RM, Wade JD, Separovic F, Hossain MA (2014) Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 46:2759–2766PubMedCrossRefGoogle Scholar
  36. Kee HJ, Cho S-N, Kim GR et al (2014) Gallic acid inhibits vascular calcification through the blockade of BMP2–Smad1/5/8 signaling pathway. Vasc Pharmacol 63:71–78. doi: 10.1016/j.vph.2014.08.005 CrossRefGoogle Scholar
  37. Kitagawa S, Nabekura T, Kamiyama S et al (2005) Effects of alkyl gallates on P-glycoprotein function. Biochem Pharmacol 70:1262–1266. doi: 10.1016/j.bcp.2005.07.013 PubMedCrossRefGoogle Scholar
  38. Ko T-C, Hour M-J, Lien J-C et al (2001) Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. Bioorg Med Chem Lett 11:279–282PubMedCrossRefGoogle Scholar
  39. Korani MS, Farbood Y, Sarkaki A et al (2014) Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol 733:62–67. doi: 10.1016/j.ejphar.2014.03.044 PubMedCrossRefGoogle Scholar
  40. Kumar RV, Bhasker S (2014) Optimizing cervical cancer care in resource-constrained developing countries by tailoring community prevention and clinical management protocol. J Cancer Policy 2:63–73CrossRefGoogle Scholar
  41. Kumar CS, Leuschner C, Doomes EE et al (2004) Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells. J Nanosci Nanotechnol 4:245–249PubMedCrossRefGoogle Scholar
  42. Lebedyeva IO, Ostrov DA, Neubert J et al (2014) Gabapentin hybrid peptides and bioconjugates. Bioorg Med Chem 22:1479–1486PubMedCrossRefGoogle Scholar
  43. Leuschner C, Enright FM, Gawronska B, Hansel W (2003) Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells. Breast Cancer Res Treat 78:17–27PubMedCrossRefGoogle Scholar
  44. Lorenzón EN, Sanches PRS, Nogueira LG et al (2013) Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids 44:1521–1528. doi: 10.1007/s00726-013-1475-3 PubMedCrossRefGoogle Scholar
  45. Lutz J-F, Börner HG (2008) Modern trends in polymer bioconjugates design. Prog Polym Sci 33:1–39CrossRefGoogle Scholar
  46. Madlener S, Illmer C, Horvath Z et al (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 245:156–162. doi: 10.1016/j.canlet.2006.01.001 PubMedCrossRefGoogle Scholar
  47. Merrifield RB (1963) Solid phase peptide synthesis 1: synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154CrossRefGoogle Scholar
  48. Mooney A, Corry AJ, O’Sullivan D et al (2009) The synthesis, structural characterization an in vitro anti-cancer activity of novel N-(3-ferrocenyl-2-naphthoyl) dipeptide ethyl esters and novel N-(6-ferrocenyl-2-naphthoyl) dipeptide ethyl esters. J Organomet Chem 694:886–894CrossRefGoogle Scholar
  49. Paredes-Gamero EJ, Martins MNC, Cappabianco FAM et al (2012) Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim Biophys Acta 1820:1062–1072. doi: 10.1016/j.bbagen.2012.02.015 PubMedCrossRefGoogle Scholar
  50. Pelin M, Sosa S, Pacor S, Tubaro A, Florio C (2014) The marine toxin palytoxin induces necrotic death in HaCaT cells through a rapid mitochondrial damage. Toxicol Lett 229:440–450. doi: 10.1016/j.toxlet.2014.07.022
  51. Pennarun B, Gaidos G, Bucur O et al (2013) killerFLIP: a novel lytic peptide specifically inducing cancer cell death. Cell Death Dis 4:894. doi: 10.1038/cddis.2013.401 CrossRefGoogle Scholar
  52. Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140PubMedGoogle Scholar
  53. Rivero-Müller A, Vuorenoja S, Tuominen M et al (2007) Use of hecate–chorionic gonadotropin β conjugate in therapy of lutenizing hormone receptor expressing gonadal somatic cell tumors. Mol Cell Endocrinol 269:17–25. doi: 10.1016/j.mce.2006.11.016 PubMedCrossRefGoogle Scholar
  54. Rosés C, Carbajo D, Sanclimens G et al (2012) Cell-penetrating γ-peptide/antimicrobial undecapeptide conjugates with anticancer activity. Tetrahedron 68:4406–4412. doi: 10.1016/j.tet.2012.02.003 CrossRefGoogle Scholar
  55. Sarjit A, Wang Y, Dykes GA (2014) Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol 46:227–233. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  56. Shin SY, Lee SH, Yand ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2001) Antibacterial, antitumor and hemolytic activities of α-helical antibiotic peptide, P18 and its analogs. J Peptide Res 58:504–514CrossRefGoogle Scholar
  57. Slaninová J, Mlsorá V, Kroupová H, Alán L, Tunová T, Menicová L, Borovickova L, Fucík V, Cerovsky V (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cell. Peptides 33:18–26PubMedCrossRefGoogle Scholar
  58. Snider C, Jayasinghe S, Hristova K, White SH (2009) MPEx: a tool for exploring membrane proteins. Protein Sci 18:2624–2628PubMedCentralPubMedCrossRefGoogle Scholar
  59. Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035PubMedGoogle Scholar
  60. Sun J, Li Y, Ding Y et al (2014) Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo. Brain Res 1589:126–139. doi: 10.1016/j.brainres.2014.09.039 PubMedCrossRefGoogle Scholar
  61. Szakács G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234. doi: 10.1038/nrd1984 PubMedCrossRefGoogle Scholar
  62. Utsugi T, Schroit AJ, Connor J et al (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066PubMedGoogle Scholar
  63. Vicente EF, Basso LGM, Cespedes GF et al (2013) Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile21)-Ha peptide from Hypsiboas albopunctatus. PLoS One. doi: 10.1371/journal.pone.0060818 Google Scholar
  64. Vilar G, Tulla-Puche J, Alberício F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9(4):367–394PubMedCrossRefGoogle Scholar
  65. Yang Q-Z, Wang C, Lang L et al (2013) Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharm Res 36:1302–1310. doi: 10.1007/s12272-013-0112-8 PubMedCrossRefGoogle Scholar
  66. Yates C, Sharp S, Jones J et al (2011) LHRH-conjugated lytic peptides directly target prostate cancer cells. Biochem Pharmacol 81:104–110PubMedCentralPubMedCrossRefGoogle Scholar
  67. You BR, Park WH (2010) Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol Vitr 24:1356–1362. doi: 10.1016/j.tiv.2010.04.009 CrossRefGoogle Scholar
  68. You BR, Moon HJ, Han YH, Park WH (2010) Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol 48:1334–1340. doi: 10.1016/j.fct.2010.02.034 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Paulo R. S. Sanches
    • 1
  • Bruno M. Carneiro
    • 2
  • Mariana N. Batista
    • 2
  • Ana Cláudia S. Braga
    • 2
  • Esteban N. Lorenzón
    • 1
  • Paula Rahal
    • 2
  • Eduardo Maffud Cilli
    • 1
    Email author
  1. 1.Department of Biochemistry and Chemical Technology, Institute of ChemistryUNESP, Univ Estadual PaulistaAraraquaraBrazil
  2. 2.Instituto de Biociências, Letras e Ciências ExatasUNESP, Univ Estadual PaulistaS.J.Rio PretoBrazil

Personalised recommendations