Skip to main content

Advertisement

Log in

Chemically functionalized single-walled carbon nanotubes enhance the glutamate uptake characteristics of mouse cortical astrocytes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Using a radioactive glutamate uptake assay and immunolabeling, we report that single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), delivered as a colloidal solute, cause an increase in the uptake of extracellular glutamate by astrocytes and an increase in the immunoreactivity of the glutamate transporter GLAST on their cell surface, which is likely a consequence of an increase in the immunoreactivity of glial fibrillary acidic protein. Additional corollary is that astrocytes exposed to SWCNT-PEG became larger and stellate, morphological characteristics of maturation and heightened activity of these glial cells. These results imply that SWCNT-PEG could potentially be used as a viable candidate for neural prosthesis applications, perhaps to alleviate the death toll of neurons due to glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotube

EAAT:

Excitatory amino acid transporter

GFAP:

Glial fibrillary acidic protein

GLAST:

l-Glutamate/l-aspartate transporter

GLT-1:

Glial l-glutamate transporter

ICC:

Indirect immunocytochemistry

ir:

Immunoreactivity

PEG:

Polyethylene glycol

ROCK:

Rho-associated protein kinase

SWCNT:

Single-walled carbon nanotube

TBOA:

dl-Threo-β-benzyloxyaspartic acid

References

  • Abe K, Misawa M (2003) Astrocyte stellation induced by Rho kinase inhibitors in culture. Brain Res Dev Brain Res 143:99–104

    Article  CAS  PubMed  Google Scholar 

  • Aprico K, Beart PM, Crawford D, O’Shea RD (2004) Binding and transport of [3H](2S,4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes. J Neurosci Res 75:751–759. doi:10.1002/jnr.20013

    Article  CAS  PubMed  Google Scholar 

  • Bekyarova E, Ni Y, Malarkey EB, Montana V, McWilliams JL, Haddon RC, Parpura V (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3–17. doi:10.1166/jbn.2005.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P (2009) Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30:702–711. doi:10.1016/j.neuro.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P et al (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285. doi:10.1038/34651

    Article  CAS  PubMed  Google Scholar 

  • Brenner M (2014) Role of GFAP in CNS injuries. Neurosci Lett 565:7–13. doi:10.1016/j.neulet.2014.01.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang SY, Shon YM, Agnesi F, Lee KH (2009) Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux. Conf Proc IEEE Eng Med Biol Soc 2009:3294–3297. doi:10.1109/IEMBS.2009.5333735

    PubMed Central  PubMed  Google Scholar 

  • Choi DW (1994) Glutamate receptors and the induction of excitotoxic neuronal death. Prog Brain Res 100:47–51

    CAS  PubMed  Google Scholar 

  • Drejer J, Honore T, Meier E, Schousboe A (1986) Pharmacologically distinct glutamate receptors on cerebellar granule cells. Life Sci 38:2077–2085

    Article  CAS  PubMed  Google Scholar 

  • Drummond GB (2009) Reporting ethical matters in the journal of physiology: standards and advice. J Physiol 587:713–719. doi:10.1113/jphysiol.2008.167387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furuta A, Rothstein JD, Martin LJ (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci 17:8363–8375

    CAS  PubMed  Google Scholar 

  • Gottipati MK, Kalinina I, Bekyarova E, Haddon RC, Parpura V (2012) Chemically functionalized water-soluble single-walled carbon nanotubes modulate morpho-functional characteristics of astrocytes. Nano Lett 12:4742–4747. doi:10.1021/nl302178s

    Article  CAS  PubMed  Google Scholar 

  • Gottipati MK, Bekyarova E, Brenner M, Haddon RC, Parpura V (2014) Changes in the morphology and proliferation of astrocytes induced by two modalities of chemically functionalized single-walled carbon nanotubes are differentially mediated by glial fibrillary acidic protein. Nano Lett 14:3720–3727. doi:10.1021/nl4048114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V (2004) Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res 76:86–97

    Article  CAS  PubMed  Google Scholar 

  • Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124:114–123. doi:10.1016/j.molbrainres.2004.02.021

    Article  CAS  PubMed  Google Scholar 

  • Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating improves neuronal recordings. Nat Nanotechnol 3:434–439. doi:10.1038/nnano.2008.174

    Article  CAS  PubMed  Google Scholar 

  • Lau CL, O’Shea RD, Broberg BV, Bischof L, Beart PM (2011) The Rho kinase inhibitor Fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes. Br J Pharmacol 163:533–545. doi:10.1111/j.1476-5381.2011.01259.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malarkey EB, Parpura V (2007) Applications of carbon nanotubes in neurobiology. Neurodegener Dis 4:292–299. doi:10.1159/000101885

    Article  CAS  PubMed  Google Scholar 

  • Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835. doi:10.1002/glia.20656

    Article  PubMed  Google Scholar 

  • McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  CAS  PubMed  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642. doi:10.1523/JNEUROSCI.3770-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Hu H, Malarkey EB, Zhao B, Montana V, Haddon RC, Parpura V (2005) Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth. J Nanosci Nanotechnol 5:1707–1712

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Hillered L, Ponten U, Ungerstedt U (1990) Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631–637

    Article  CAS  PubMed  Google Scholar 

  • Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774. doi:10.1089/0897715041269641

    Article  PubMed  Google Scholar 

  • Potokar M et al (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20

    Article  CAS  PubMed  Google Scholar 

  • Reyes RC, Perry G, Lesort M, Parpura V (2011) Immunophilin deficiency augments Ca2+-dependent glutamate release from mouse cortical astrocytes. Cell Calcium 49:23–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roman JA, Niedzielko TL, Haddon RC, Parpura V, Floyd CL (2011) Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. J Neurotrauma 28:2349–2362. doi:10.1089/neu.2010.1409

    Article  PubMed Central  PubMed  Google Scholar 

  • Sage D, Neumann FR, Hediger F, Gasser SM, Unser M (2005) Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 14:1372–1383

    Article  PubMed  Google Scholar 

  • Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T (1998) dl-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 53:195–201

    CAS  PubMed  Google Scholar 

  • Wang YF, Hatton GI (2009) Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions. J Neurosci 29:1743–1754. doi:10.1523/JNEUROSCI.4669-08.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YF, Sun MY, Hou Q, Parpura V (2013) Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 61:529–538. doi:10.1002/glia.22453

    Article  PubMed  Google Scholar 

  • Wick P et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131. doi:10.1016/j.toxlet.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  • Wilms H, Hartmann D, Sievers J (1997) Ramification of microglia, monocytes and macrophages in vitro: influences of various epithelial and mesenchymal cells and their conditioned media. Cell Tissue Res 287:447–458

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Wang YX, Dou FF, Lu HZ, Ma ZW, Lu PH, Xu XM (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56:577–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Stephanie M. Robert and Dr. Harald Sontheimer, University of Alabama at Birmingham, for their help with the glutamate uptake study and Dr. Vladimir Grubišić for his constructive comments on a previous version of this manuscript. V. Parpura acknowledges the support of this work by National Institutes of Health (The Eunice Kennedy Shriver National Institute of Child Health and Human Development award HD078678).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Parpura.

Additional information

Handling Editor: G. Lubec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottipati, M.K., Bekyarova, E., Haddon, R.C. et al. Chemically functionalized single-walled carbon nanotubes enhance the glutamate uptake characteristics of mouse cortical astrocytes. Amino Acids 47, 1379–1388 (2015). https://doi.org/10.1007/s00726-015-1970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1970-9

Keywords

Navigation