Skip to main content

Advertisement

Log in

Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Relaxin-3 and its endogenous receptor RXFP3 are involved in fundamental neurological signalling pathways, such as learning and memory, stress, feeding and addictive behaviour. Consequently, this signalling system has emerged as an attractive drug target. Development of leads targeting RXFP3 relies on assays for screening and ligand optimization. Here, we present the synthesis and in vitro characterization of a fluorescent europium-labelled antagonist of RXFP3. This ligand represents a cheap and safe but powerful tool for future mechanistic and cell-based receptor–ligand interaction studies of the RXFP3 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Albizu L, Teppaz G, Seyer R, Bazin H, Ansanay H, Manning M, Mouillac B, Durroux T (2007) Toward efficient drug screening by homogeneous assays based on the development of new fluorescent vasopressin and oxytocin receptor ligands. J Med Chem 50:4976–4985

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Shen PJ, Ma S, Bathgate RA, Gundlach AL (2010) Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology 58:145–155

    Article  CAS  PubMed  Google Scholar 

  • Belgi A, Hossain MA, Shabanpoor F, Chan L, Zhang S, Bathgate RA, Tregear GW, Wade JD (2011) Structure and function relationship of murine insulin-like peptide 5 (INSL5): free C-terminus is essential for RXFP4 receptor binding and activation. Biochemistry 50:8352–8361

    Article  CAS  PubMed  Google Scholar 

  • Diamandis EP (1988) Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21:139–150

    Article  CAS  PubMed  Google Scholar 

  • Handl HL, Gillies RJ (2005) Lanthanide-based luminescent assays for ligand-receptor interactions. Life Sci 77:361–371

    Article  CAS  PubMed  Google Scholar 

  • Haugaard-Kedstrom LM, Shabanpoor F, Hossain MA, Clark RJ, Ryan PJ, Craik DJ, Gundlach AL, Wade JD, Bathgate RA, Rosengren KJ (2011) Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J Am Chem Soc 133:4965–4974

    Article  CAS  PubMed  Google Scholar 

  • Hida T, Takahashi E, Shikata K, Hirohashi T, Sawai T, Seiki T, Tanaka H, Kawai T, Ito O, Arai T, Yokoi A, Hirakawa T, Ogura H, Nagasu T, Miyamoto N, Kuromitsu J (2006) Chronic intracerebroventricular administration of relaxin-3 increases body weight in rats. J Recept Signal Transduct Res 26:147–158

    Article  CAS  PubMed  Google Scholar 

  • Hoffman J, Flynn AN, Tillu DV, Zhang Z, Patek R, Price TJ, Vagner J, Boitano S (2012) Lanthanide labeling of a potent protease activated receptor-2 agonist for time-resolved fluorescence analysis. Bioconjug Chem 23:2098–2104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Josan JS, De Silva CR, Yoo B, Lynch RM, Pagel MD, Vagner J, Hruby VJ (2011) Fluorescent and lanthanide labeling for ligand screens, assays, and imaging. Methods Mol Biol 716:89–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J, Nepomuceno D, Wu JJ, Chen JC, Kamme F, Seierstad M, Hack MD, Bathgate RAD, Hossain MA, Wade JD, Atack J, Lovenberg TW, Liu CL (2007) R3(B Delta 23-27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7—in vitro and in vivo characterization. J Biol Chem 282:25425–25435

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Chen J, Sutton S, Roland B, Kuei C, Farmer N, Sillard R, Lovenberg T (2003a) Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem 278:50765–50770

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Eriste E, Sutton S, Chen JC, Roland B, Kuei C, Farmer N, Jornvall H, Sillard R, Lovenberg TW (2003b) Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem 278:50754–50764

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P, Lovenberg T (2005) Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol 67:231–240

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Shen PJ, Burazin TC, Tregear GW, Gundlach AL (2006) Comparative localization of leucine-rich repeat-containing G-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action? Neuroscience 141:329–344

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu CL, Wade JD, Sutton SW, Nunez A, Gundlach AL (2009) Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem 16:730–742

    Article  CAS  PubMed  Google Scholar 

  • McGowan BMC, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology 146:3295–3300

    Article  CAS  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL, Patterson M, Connolly MM, Abbott CR, Small CJ, Gardiner JV, Ghatei MA, Bloom SR (2006) Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul Pept 136:72–77

    Article  CAS  PubMed  Google Scholar 

  • Rosengren KJ, Lin F, Bathgate RA, Tregear GW, Daly NL, Wade JD, Craik DJ (2006) Solution structure and novel insights into the determinants of the receptor specificity of human relaxin-3. J Biol Chem 281:5845–5851

    Article  CAS  PubMed  Google Scholar 

  • Ryan PJ, Buchler E, Shabanpoor F, Hossain MA, Wade JD, Lawrence AJ, Gundlach AL (2013a) Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav Brain Res 244:142–151

    Article  CAS  PubMed  Google Scholar 

  • Ryan PJ, Kastman HE, Krstew EV, Rosengren KJ, Hossain MA, Churilov L, Wade JD, Gundlach AL, Lawrence AJ (2013b) Relaxin-3/RXFP3 system regulates alcohol-seeking. Proc Natl Acad Sci USA 110:20789–20794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shabanpoor F, Hughes RA, Bathgate RA, Zhang S, Scanlon DB, Lin F, Hossain MA, Separovic F, Wade JD (2008) Solid-phase synthesis of europium-labeled human INSL3 as a novel probe for the study of ligand-receptor interactions. Bioconjug Chem 19:1456–1463

    Article  CAS  PubMed  Google Scholar 

  • Shabanpoor F, Separovic F, Wade JD (2011) General method for selective labelling of double-chain cysteine-rich peptides with a lanthanide chelate via solid-phase synthesis. J Pept Sci: Off Pub Eur Pept Soc 17:169–173

    Article  CAS  Google Scholar 

  • Shabanpoor F, Bathgate RA, Belgi A, Chan LJ, Nair VB, Wade JD, Hossain MA (2012) Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone. Biochem Biophys Res Commun 420:253–256

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M, Gundlach AL (2014) Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 5:46

    PubMed Central  PubMed  Google Scholar 

  • Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate R, Hsueh A (2003) H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem 278:7855–7862

    Article  CAS  PubMed  Google Scholar 

  • Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, Lovenberg TW, Liu C (2004) Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology 80:298–307

    Article  CAS  PubMed  Google Scholar 

  • Zhang WJ, Jiang Q, Wang XY, Song G, Shao XX, Guo ZY (2013) A convenient method for europium-labeling of a recombinant chimeric relaxin family peptide R3/I5 for receptor-binding assays. J Pept Sci 19:350–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K. J. R. is an ARC Future Fellow and R. A. D. B an NHMRC (Australia) Senior Research Fellow, respectively. This work was supported by NHMRC project grants APP1066369 and APP1065481 to K. J. R and R. A. D. B. Research at The Florey Institute of Neuroscience and Mental Health was supported by the Victorian Government Operational Infrastructure Support Program.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Johan Rosengren.

Additional information

Handling Editor: D. Tsikas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haugaard-Kedström, L.M., Wong, L.L.L., Bathgate, R.A.D. et al. Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3. Amino Acids 47, 1267–1271 (2015). https://doi.org/10.1007/s00726-015-1961-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1961-x

Keywords

Navigation