Amino Acids

, Volume 47, Issue 9, pp 1729–1740 | Cite as

Possible sources and functions of l-homoarginine in the brain: review of the literature and own findings

  • Hans-Gert BernsteinEmail author
  • Kristin Jäger
  • Henrik Dobrowolny
  • Johann Steiner
  • Gerburg Keilhoff
  • Bernhard Bogerts
  • Gregor Laube
Original Article
Part of the following topical collections:
  1. Homoarginine, Arginine and Relatives


l-Homoarginine is a cationic amino acid derivative, which is structurally related to l-arginine and lysine. Several lines of evidence point to nervous tissue as an important target of homoarginine action. In the mammalian brain homoarginine can be detected in noticeable quantities, but its origin is currently poorly explored. In part I of this review we try to show that both uptake and transport into brain (carried out by cationic amino acid transporters) and local synthesis in the brain (carried out by the homoarginine-synthesizing enzymes l-arginine:glycine amidinotransferase and ornithine transcarbamylse) might contribute to homoarginine brain content. We then give a brief overview about the multiple effects of homoarginine on the healthy brain and show that both homoarginine excess and deficiency are potentially harmful to the central nervous system. In part II, we shortly report about own experiments with regard to the cellular localization of cationic amino acid transporters, as well the enzymes l-arginine:glycine amidinotransferase and ornithine transcarbamylse, in human and rat brains.


l-Homoarginine Brain Transport Synthesis Functions Brain diseases 



l-Arginineglycine amidinotransferase


Cationic amino acid transporter


Central nervous system


Cerebrospinal fluid


Circumventricular organs


Detection limit




γ-Aminobutyric acid


Guanidinoacetate methyltransferase




Human cationic amino acid transporter


Immunoglobulin G


Nitric oxide


Nitric oxide synthase


Endothelial nitric oxide synthase


Inducible nitric oxide synthase


Neuronal nitric oxide synthase


Ornithine transcarbamylase


Solute carriers (family of transporter proteins)





The authors wish to thank B. Jerzykiewicz for excellent technical assistance.

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

Brains were obtained in accordance with existing German and European Union regulations from the Magdeburg Brain Bank. All experimental procedures were in addition approved by the Ethical Committee of Magdeburg.


  1. Aldridge CR, Collard KJ (1996) The characteristics of arginine transport by rat cerebellar and cortical synaptosomes. Neurochem Res 21:1539–1546CrossRefPubMedGoogle Scholar
  2. Angkanaporn K, Ravindran V, Mollah Y, Bryden WL (1987) Homoarginine influences voluntary feed intake, tissue basic amino acid concentrations and arginase activity in chickens. J Nutr 127:1128–1136Google Scholar
  3. Atzler D, Gore MO, Ayers CR, Choe CU, Böger RH, de Lemos JA, McGuire DK, Schwedhelm E (2014) Homoarginine and cardiovascular outcome in the population-based Dallas Heart Study. Arterioscler Thromb Vasc Biol 34:2501–2507CrossRefPubMedGoogle Scholar
  4. Atzler D, Schwedhelm E, Choe CU (2015) l-Homoarginine and cardiovascular disease. Curr Opin Clin Nutr Metab Care 18:83–88CrossRefPubMedGoogle Scholar
  5. Balz D, de Souza Wyse AT, Morsch VM, da Silva AC, Vieira VL, Morsch AL, Schetinger MR (2003) In vitro effects of l-arginine and guanidino compounds on NTPDase1 and 5′-nucleotidase activities from rat brain synaptosomes. Int J Dev Neurosci 21:75–82CrossRefPubMedGoogle Scholar
  6. Bensemain F, Hot D, Ferreira S, Dumont J, Bombois S, Maurage CA, Huot L, Hermant X, Levillain E, Hubans C, Hansmannel F, Chapuis J, Hauw JJ, Schraen S, Lemoine Y, Buée L, Berr C, Mann D, Pasquier F, Amouyel P, Lambert JC (2009) Evidence for induction of the ornithine transcarbamylase expression in Alzheimer’s disease. Mol Psychiatry 14:106–116CrossRefPubMedGoogle Scholar
  7. Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P, Falkai P, Bogerts B (1998) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875CrossRefPubMedGoogle Scholar
  8. Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED, Braunewell KH (1999) Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. J Neurocytol 28:655–662CrossRefPubMedGoogle Scholar
  9. Bernstein HG, Hölzl G, Dobrowolny H, Hildebrandt J, Trübner K, Krohn M, Bogerts B, Pahnke J (2014) Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. Mech Ageing Dev 141:12–21CrossRefPubMedGoogle Scholar
  10. Braissant O, Gotoh T, Loup M, Mori M, Bachmann C (2001a) Differential expression of the cationic amino acid transporter 2(B) in the adult rat brain. Brain Res Mol Brain Res 91:189–195CrossRefPubMedGoogle Scholar
  11. Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001b) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Mol Brain Res 86:193–201CrossRefPubMedGoogle Scholar
  12. Braissant O, Villard A, Henry H, Speer O, Wallimann T, Bachmann C (2005a) Synthesis and transport of creatine in the central nervous system. In: Clinical and molecular aspects of defects in creatine and polyol metabolism. Jakobs C, Stöckler-Ipsiroglu eds. (SPS Verlagsgesellschaft Heilbronn, Germany), pp 49–63Google Scholar
  13. Braissant O, Henry H, Villard AM, Speer O, Wallimann T, Bachmann C (2005b) Creatine synthesis and transport during rat embryogenesis.: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol 5:9PubMedCentralCrossRefPubMedGoogle Scholar
  14. Braissant O, Bachmann C, Henry H (2007) Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell Biochem 46:67–81CrossRefPubMedGoogle Scholar
  15. Choe CU, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, Simova O, Stockebrand M, Lackner K, Nabuurs C, Marescau B, Streichert T, Müller C, Lüneburg N, De Deyn PP, Benndorf RA, Baldus S, Gerloff C, Blankenberg S, Heerschap A, Grant PJ, Magnus T, Zeller T, Isbrandt D, Schwedhelm E (2013) Homoarginine levels are regulated by l-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128:1451–1461CrossRefPubMedGoogle Scholar
  16. Closs EI, Gräf P, Habermeier A, Cunningham JM, Förstermann U (1997) Human cationic amino acid transporters hCAT-1, hCAT-2A and hCAT-2B: three related carriers with distinct transport properties. Biochemistry 36:6462–6468CrossRefPubMedGoogle Scholar
  17. Closs EI, Boissel JP, Habermeier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membr Biol 213:67–77CrossRefPubMedGoogle Scholar
  18. Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, Miller LW, Birks EJ, Yacoub MH, Barton PJ (2006) Myocardial expression of the arginine: glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(Suppl I):16–20Google Scholar
  19. Davids M, Ndika JD, Salomons GS, Blom HJ, Teerlink T (2012) Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 586:3653–3657CrossRefPubMedGoogle Scholar
  20. De Deyn PP, Marescau B, MacDonald RL (1990) Epilepsy and the GABA-hypothesis a brief review and some examples. Acta Neurol Belg 90:65–81PubMedGoogle Scholar
  21. Deignan JL, Marescau B, Livesay JC, Iyer RK, De Deyn PP, Cederbaum SD, Grody WW (2008) Increased plasma and tissue guanidino compounds in a mouse model of hyperargininemia. Mol Genet Metab 93:172–178CrossRefPubMedGoogle Scholar
  22. Deignan JL, De Deyn PP, Cederbaum SD, Fuchshuber A, Roth B, Gsell W, Marescau B (2010) Guanidino compound levels in blood, cerebrospinal fluid, and post-mortem brain material of petients with argininemia. Mol Genet Metab 100:531–536CrossRefGoogle Scholar
  23. Delwing-de Lima D, Wollinger LF, Casagrande AC, Delwing F, da Cruz JG, Wyse AT, Delwing-Dal Magro D (2010) Guanidino compounds inhibit acetylcholinesterase and butyrylcholinesterase activities: effect neuroprotector of vitamins E plus C. Int J Dev Neurosci 28:465–473CrossRefPubMedGoogle Scholar
  24. Fiori LM, Bureau A, Labbe A, Croteau J, Noël S, Mérette C, Turecki G (2011) Global gene expression profiling of the polyamine system in suicide completers. Int J Neuropsychopharmacol 14:595–605CrossRefPubMedGoogle Scholar
  25. Fishman WH, Sie HG (1971) Organ-specific inhibition of human alkaline phosphatase isoenzymes of liver, bone, intestine and placenta; l-phenylalanine, l-tryptophan and L homoarginine. Enzymologia 41:141–167PubMedGoogle Scholar
  26. Gordon N (2010) Guanidinoacetate methyltransferase deficiency (GAMT). Brain Dev 32:79–81CrossRefPubMedGoogle Scholar
  27. Hansmannel F, Lendon C, Pasquier F, Dumont J, Hannequin D, Chapuis J, Laumet G, Ayral AM, Galimberti D, Scarpini E, Campion D, Amouyel P, Lambert JC (2009) Is the ornithine transcarbamylase gene a genetic determinant of Alzheimer’s disease? Neurosci Lett 449:76–80CrossRefPubMedGoogle Scholar
  28. Hiramatsu M (2003) A role for guanidine compounds in the brain. Mol Cell Biochem 244:57–62CrossRefPubMedGoogle Scholar
  29. Jäger K, Wolf S, Dobrowolny H, Steiner J, Nave H, Maronde E, Bogerts B, Bernstein HG (2013) Differential topochemistry of three cationic amino acid transporter proteins, hCAT1, hCAT2 and hCAT3, in the adult human brain. Amino Acids 44:423–433CrossRefPubMedGoogle Scholar
  30. Jaźwińska-Kozuba A, Martens-Lobenhoffer J, Kruszelnicka O, Rycaj J, Chyrchel B, Surdacki A, Bode-Böger SM (2013) Opposite associations of plasma homoarginine and ornithine with arginine in healthy children and adolescents. Int J Mol Sci 14:21819–21832CrossRefPubMedGoogle Scholar
  31. Kakuda DK, MaLoed CL (1994) Na+-independent transport (uniport) of amino acids and glucose in mammalian cells. J Exp Biol 196:93–108PubMedGoogle Scholar
  32. Kayacelebi AA, Nguyen TH, Neil C, Horowitz JD, Jordan J, Tsikas D (2014) Homoarginine and 3-nitrotyrosine in patients with takotsubo cardiomyopathy. Int J Cardiol 173:546–547CrossRefPubMedGoogle Scholar
  33. Khandare AL, Ankulu M, Aparna N (2013) Role of glutamate and nitric oxide in onset of motor neuron degeneration in neurolathyrism. Neurotoxicology 34(269–274):21Google Scholar
  34. Kikuchi Y, Takagi M, Parmley RT, Ghanta VK, Hiramoto RN (1982) Inhibitory effect of l-homoarginine on murine osteosarcoma cell proliferation. Cancer Res 42:1072–1077PubMedGoogle Scholar
  35. Kleber ME, Seppälä I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, Raitoharju E, Lyytikäinen LP, Mäkelä KM, Laaksonen R, Kähönen M, Raitakari OT, Huang J, Kienreich K, Fahrleitner-Pammer A, Drechsler C, Krane V, Boehm BO, Koenig W, Wanner C, Lehtimäki T, März W, Meinitzer A (2013) Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circ Cardiovasc Genet 6:505–513CrossRefPubMedGoogle Scholar
  36. Lambert LE, French JF, Whitten JP, Baron BM, McDonald IA (1992) Characterization of cell selectivity of two novel inhibitors of nitric oxide synthesis. Eur J Pharmacol 216:131–134CrossRefPubMedGoogle Scholar
  37. Lee EK, Hu C, Bhargava R, Ponnusamy R, Park H, Novicoff S, Rozengurt N, Marescau B, De Deyn P, Stout D, Schlichting L, Grody WW, Cederbaum SD, Lipshutz GS (2013) AAV-based gene therapy prevents neuropathology and results in normal cognitive development in the hyperargininemic mouse. Gene Ther 20:785–796PubMedCentralCrossRefPubMedGoogle Scholar
  38. Lisi L, Tramutola A, Navarra P, Dello Russo C (2014) Antiretroviral agents increase NO production in gp120/IFNγ-stimulated cultures of rat microglia via an arginase-dependent mechanism. J Neuroimmunol 266:24–32CrossRefPubMedGoogle Scholar
  39. Lopes-Marques M, Pereira-Castro I, Amorim A, Azevedo L (2012) Characterization of the human orhnithine transcaramylase 3′ untranslated regulatory region. DNA Cell Biol 31:427–433PubMedCentralCrossRefPubMedGoogle Scholar
  40. Manner CK, Nicholson B, MacLeod CL (2003) CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes. J Neurochem 85:476–482CrossRefPubMedGoogle Scholar
  41. Marescau B, Qureshi IA, De Deyn P, Letarte J, Ryba R, Lowenthal A (1985) Guanidino compounds in plasma, urine and cerebrospinal fluid of hyperargininemic patients during therapy. Clin Chim Acta 146:21–27CrossRefPubMedGoogle Scholar
  42. Marescau B, Deshmukh DR, Kockx M, Possemiers I, Qureshi IA, Wiechert P, De Deyn PP (1992) Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41:526–532CrossRefPubMedGoogle Scholar
  43. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, Wanner C (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975CrossRefPubMedGoogle Scholar
  44. May M, Kayacelebi AA, Batkai S, Jordan J, Tsikas D, Engeli S (2015) Plasma and tissue homoarginine concentrations in healthy and obese humans. Amino Acids. doi: 10.1007/s00726-015-1922-4 (in press)
  45. Mizutani N, Hayakawa C, Ohya Y, Watanabe K, Watanabe Y, Mori A (1987) Guanidino compounds in hyperargininemia. Tohoku J Exp Med 153:197–205CrossRefPubMedGoogle Scholar
  46. O´Kane RL, Viña JR, Simpson I, Zaragozá R, Mokashi A, Hawkins RA (2006) Cationic amino acid transport across blood-brain barrier is mediated exclusively by system y+. Am J Physiol Endocrinol Metab 291:E412–E419CrossRefGoogle Scholar
  47. Peters D, Berger J, Langnaese K, Derst C, Madai VI, Krauss M, Fischer KD, Veh RW, Laube G (2010) Arginase and arginine decarboxylase - where do the putative gate keepers of polyamine synthesis reside in the rat brain? PlosOne 8:e66735CrossRefGoogle Scholar
  48. Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V, Wanner C, Boehm BO, März W (2011) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97:1222–1227CrossRefPubMedGoogle Scholar
  49. Pilz S, Meinitzer A, Tomaschitz A, Kienreich K, Fahrleitner-Pammer A, Drechsler C, Boehm BO, März W (2012) Homoarginine deficiency is associated with increased bone turnover. Osteoporos Int 23:2731–2732CrossRefPubMedGoogle Scholar
  50. Porcelli V, Fiermonte G, Longo A, Palmieri F (2014) The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids. J Biol Chem 289:13374–13384PubMedCentralCrossRefPubMedGoogle Scholar
  51. Ryan WL, Barak AJ, Johnson RJ (1968) Lysine, homocitrulline, and homoarginine metabolism by the isolated perfused rat liver. Arch Biochem Biophys 123(2):294–297CrossRefPubMedGoogle Scholar
  52. Ryan WL, Johnson RJ, Dimari S (1969) Homoarginine synthesis by rat kidney. Arch Biochem Biophys 131:521–526CrossRefPubMedGoogle Scholar
  53. Sato T, Sakurada S, Sakurada T, Kisara K, Sasaki Y, Akutsu Y, Suzuki K (1984) Comparison of the entinociceptive effect beween the cyclic dipeptide cyclo[Tyr(Et)-homoarginine and the linear dipeptide Boc-Tyr(Et)-homoarginine-OMe in rats. Jpn J Pharmacol 34:1–8CrossRefPubMedGoogle Scholar
  54. Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244:143–150CrossRefPubMedGoogle Scholar
  55. Shiraga H, Watanabe Y, Mori A (1991) Guanidino compound levels in the serum of healthy adults and epileptic patients. Epilepsy Res 8:142–148CrossRefPubMedGoogle Scholar
  56. Simell O (1975) Diamino acid transport into granulocytes and liver slices of patients with lysinuric protein intolerance. Pediatr Res 9:504–508CrossRefPubMedGoogle Scholar
  57. Simell O, Perheentupa J (1974) Transport of homoarginine into liver slices of patients with lysinuric protein intolerance (LPI). Pediatr Res 8:904CrossRefGoogle Scholar
  58. Steib H (1926) Über d, I-α Methylarginin. Hoppe Seyler’s Z Physiol Chem 155:279–291CrossRefGoogle Scholar
  59. Stevens CM, Bush JA (1950) New synthesis of α-amino-ε-guanidino-n-caproic acid (homoarginine) and its possible conversion in vivo into lysine. J Biol Chem 183:139–147Google Scholar
  60. Terheggen HG, Lowenthal A, Lavinha F, Colombo JP (1975) Familial hyperargininaemia. Arch Dis Child 50:57–62PubMedCentralCrossRefPubMedGoogle Scholar
  61. Tews JK, Harper AE (1983) Atypical amino acids inhibit histidine, valine, or lysine transport into rat brain. Am J Physiol 245:R556–R563PubMedGoogle Scholar
  62. Van Winkle LJ, Christensen HN, Campione AL (1985) Na+-dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts. J Biol Chem 260:12118–12123PubMedGoogle Scholar
  63. Vodopiutz J, Item CB, Häusler M, Korall H, Bodamer OA (2007) Severe speech delay as the presenting symptom of guanidinoacetate methyltransferase deficiency. J Child Neurol 22:773–774CrossRefPubMedGoogle Scholar
  64. Watanabe Y, Yokoi I, Watanabe S, Sugi H, Mori A (1988) Formation of 2-guanidinoethanol by a transamidination reaction from arginine and ethanolamine by the rat kidney and pancreas. Life Sci 43:295–302CrossRefPubMedGoogle Scholar
  65. White MF, Christensen HN (1982) The two-way flux of cationic amino acids across the plasma membrane of mammalian cells is largely explained by a single transport system. J Biol Chem 257:10069–10080PubMedGoogle Scholar
  66. White MF, Gazzola GC, Christensen HN (1982) Cationic amino acid transport into cultured animal cells, part I. Influx into cultured human fibroblasts. J Biol Chem 257:4443–4449PubMedGoogle Scholar
  67. Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64:365–391CrossRefPubMedGoogle Scholar
  68. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatine metabolism. Physiol Rev 80:1107–1213PubMedGoogle Scholar
  69. Yokoi I, Toma J, Mori A (1984–1985) The effect of homoarginine on the EEG of rats. Neurochem Pathol 2:295–300Google Scholar
  70. Yokoi I, Kabuto H, Habu H, Inada K, Toma J, Mori A (1994) Structure-activity relationships of arginine analogues on nitric oxide synthase activity in the rat brain. Neuropharmacology 33:1261–1265CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Hans-Gert Bernstein
    • 1
    Email author
  • Kristin Jäger
    • 2
  • Henrik Dobrowolny
    • 1
  • Johann Steiner
    • 1
  • Gerburg Keilhoff
    • 3
  • Bernhard Bogerts
    • 1
  • Gregor Laube
    • 4
  1. 1.Department of Psychiatry, Faculty of MedicineOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of Anatomy and Cell BiologyUniversity of HalleHalleGermany
  3. 3.Faculty of Medicine, Institute of Biochemistry and Cell BiologyOtto-von-Guericke UniversityMagdeburgGermany
  4. 4.Electron Microscopy and Molecular Neuroanatomy, Center of AnatomyCharitéBerlinGermany

Personalised recommendations