Advertisement

Amino Acids

, Volume 47, Issue 9, pp 1885–1891 | Cite as

Plasma homoarginine, arginine, asymmetric dimethylarginine and total homocysteine interrelationships in rheumatoid arthritis, coronary artery disease and peripheral artery occlusion disease

  • Arslan Arinc Kayacelebi
  • Janina Willers
  • Vu Vi Pham
  • Andreas Hahn
  • Jessica Y. Schneider
  • Sabine Rothmann
  • Jürgen C. Frölich
  • Dimitrios TsikasEmail author
Original Article
Part of the following topical collections:
  1. Homoarginine, Arginine and Relatives

Abstract

Elevated circulating concentrations of total l-homocysteine (thCys) and free asymmetric dimethylarginine (ADMA) are long-established cardiovascular risk factors. Low circulating l-homoarginine (hArg) concentrations were recently found to be associated with increased cardiovascular morbidity and mortality. The biochemical pathways of these amino acids overlap and share the same cofactor S-adenosylmethionine (SAM). In the present study, we investigated potential associations between hArg, l-arginine (Arg), ADMA and thCys in plasma of patients suffering from rheumatoid arthritis (RA), coronary artery disease (CAD) or peripheral artery occlusive disease (PAOD). In RA, we did not find any correlation between ADMA or hArg and thCys at baseline (n = 100) and after (n = 83) combined add-on supplementation of omega-3 fatty acids, vitamin E, vitamin A, copper, and selenium, or placebo (soy oil). ADMA correlated with Arg at baseline (r = 0.446, P < 0.001) and after treatment (r = 0.246, P = 0.03). hArg did not correlate with ADMA, but correlated with Arg before (r = 0.240, P = 0.02) and after treatment (r = 0.233, P = 0.03). These results suggest that hArg, ADMA and Arg are biochemically familiar with each other, but unrelated to hCys in RA. In PAOD and CAD, ADMA and thCys did not correlate.

Keywords

Cardiovascular risk Homoarginine Homocysteine Methylation Plasma Rheumatoid arthritis 

Abbreviations

ADMA

Asymmetric dimethylarginine (N G,N G-dimethyl-l-arginine)

AGAT

Arginine:glycine amidinotransferase

CAD

Coronary artery disease

GAMT

Guanidinoacetate methyltransferase

GC–MS

Gas chromatography–mass spectrometry

GC–MS/MS

Gas chromatography–tandem mass spectrometry

hArg

Homoarginine

hCys/thCys

Homocysteine/total homocysteine

NO

Nitric oxide

NOS

Nitric oxide synthase

PAOD

Peripheral arterial occlusive disease

RA

Rheumatoid arthritis

SAH

S-Adenosylhomocysteine hydrolase

SAM

S-adenosylmethionine

Notes

Acknowledgments

The authors are thankful to Bibiana Beckmann for excellent laboratory assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Antoniades C, Tousoulis D, Marinou K, Vasiliadou C, Tentolouris C, Bouras G, Pitsavos C, Stefanadis C (2006) Asymmetrical dimethylarginine regulates endothelial function in methionine-induced but not in chronic homocystinemia in humans: effect of oxidative stress and proinflammatory cytokines. Am J Clin Nutr 84:781–788PubMedGoogle Scholar
  2. Böger RH, Maas R, Schulze F, Schwedhelm E (2009) Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality—an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 60:481–487CrossRefPubMedGoogle Scholar
  3. Bretscher LE, Li H, Poulos TL, Griffith OW (2003) Structural characterization and kinetics of nitric-oxide synthase inhibition by novel N5-(iminoalkyl)- and N5-(iminoalkenyl)-ornithines. J Biol Chem 278:46789–46797CrossRefPubMedGoogle Scholar
  4. Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40:1325–1331CrossRefPubMedGoogle Scholar
  5. Chobanyan-Jürgens K, Pham VV, Stichtenoth DO, Tsikas D (2011) Elevated dimethylarginine dimethylaminohydrolase (DDAH) activity in rheumatoid arthritis and spondyloarthritis. Nitric Oxide 25:436–438CrossRefPubMedGoogle Scholar
  6. Choe CU, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, Simova O, Stockebrand M, Lackner K, Nabuurs C, Marescau B, Streichert T, Muller C, Luneburg N, De Deyn PP, Benndorf RA, Baldus S, Gerloff C, Blankenberg S, Heerschap A, Grant PJ, Magnus T, Zeller T, Isbrandt D, Schwedhelm E (2013) Homoarginine levels are regulated by l-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128:1451–1461CrossRefPubMedGoogle Scholar
  7. Crowson CS, Nicola PJ, Kremers HM, O’Fallon WM, Therneau TM, Jacobsen SJ, Roger VL, Ballman KV, Gabriel SE (2005) How much of the increased incidence of heart failure in rheumatoid arthritis is attributable to traditional cardiovascular risk factors and ischemic heart disease? Arthritis Rheum 52:3039–3044CrossRefPubMedGoogle Scholar
  8. Davids M, Ndika JD, Salomons GS, Blom HJ, Teerlink T (2012) Promiscuous activity of arginine:glycine amidinotransferase is responsible for the synthesis of the novel cardiovascular risk factor homoarginine. FEBS Lett 586:3653–3657CrossRefPubMedGoogle Scholar
  9. Dimitroulas T, Sandoo A, Kitas GD (2012) Asymmetric dimethylarginine as a surrogate marker of endothelial dysfunction and cardiovascular risk in patients with systemic rheumatic diseases. Int J Mol Sci 13:12315–12335PubMedCentralCrossRefPubMedGoogle Scholar
  10. Dimitroulas T, Sandoo A, van Veldhuijzen JJZ et al (2013) Predictors of asymmetric dimethylarginine levels in patients with rheumatoid arthritis: the role of insulin resistance. Scand J Rheumatol 42:176–181CrossRefPubMedGoogle Scholar
  11. Dimitroulas T, Sandoo A, Smith JP, Kitas GD (2014) Asymmetric dimethylarginine is not associated with subendocardial viability ratio in rheumatoid arthritis. Int J Cardiol 172:285–286CrossRefPubMedGoogle Scholar
  12. Doshi S, McDowell I, Goodfellow J, Stabler S, Boger R, Allen R, Newcombe R, Lewis M, Moat S (2005) Relationship between S-adenosylmethionine, S-adenosylhomocysteine, asymmetric dimethylarginine, and endothelial function in healthy human subjects during experimental hyper- and hypohomocysteinemia. Metabolism 54(3):351–360CrossRefPubMedGoogle Scholar
  13. Drechsler C, Meinitzer A, Pilz S, Krane V, Tomaschitz A, Ritz E, März W, Wanner C (2011) Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients. Eur J Heart Fail 13:852–859PubMedCentralCrossRefPubMedGoogle Scholar
  14. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R (2009) Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46:241–281CrossRefPubMedGoogle Scholar
  15. Horowitz JD, Heresztyn T (2007) An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B 851:42–50CrossRefGoogle Scholar
  16. Jaźwińska-Kozuba A, Martens-Lobenhoffer J, Kruszelnicka O, Rycaj J, Chyrchel B, Surdacki A, Bode-Böger SM (2013) Opposite associations of plasma homoarginine and ornithine with arginine in healthy children and adolescents. Int J Mol Sci 14:21819–21832CrossRefPubMedGoogle Scholar
  17. Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014a) GC-MS and GC-MS/MS measurement of the cardiovascular risk factor homoarginine in biological samples. Amino Acids 46:2205–2217CrossRefPubMedGoogle Scholar
  18. Kayacelebi AA, Nguyen TH, Neil C, Horowitz JD, Jordan J, Tsikas D (2014b) Homoarginine and 3-nitrotyrosine in patients with takotsubo cardiomyopathy. Int J Cardiol 173:546–547CrossRefPubMedGoogle Scholar
  19. Kayacelebi AA, Pham VV, Willers J, Hahn A, Stichtenoth DO, Jordan J, Tsikas D (2014c) Plasma homoarginine (hArg) and asymmetric dimethylarginine (ADMA) in patients with rheumatoid arthritis: is homoarginine a cardiovascular corrective in rheumatoid arthritis, an anti-ADMA? Int J Cardiol 176:1129–1131CrossRefPubMedGoogle Scholar
  20. Khalil AA, Tsikas D, Akolekar R, Jordan J, Nicolaides KH (2013) Asymmetric dimethylarginine, arginine and homoarginine at 11–13 weeks’ gestation and preeclampsia: a case-control study. J Hum Hypertens 27:38–43CrossRefPubMedGoogle Scholar
  21. Leiper J, Vallance P (1999) Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 43:542–548CrossRefPubMedGoogle Scholar
  22. Lévy L, Fautrel B, Barnetche T, Schaeverbeke T (2008) Incidence and risk of fatal myocardial infarction and stroke events in rheumatoid arthritis patients. A systematic review of the literature. Clin Exp Rheumatol 26:673–679PubMedGoogle Scholar
  23. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, Genest J (2006) Heart outcomes prevention evaluation (HOPE) 2 investigators homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354: 1567–1577Google Scholar
  24. März W, Meinitzer A, Drechsler C, Pilz S, Krane V, Kleber ME, Fischer J, Winkelmann BR, Böhm BO, Ritz E, Wanner C (2010) Homoarginine, cardiovascular risk, and mortality. Circulation 122:967–975CrossRefPubMedGoogle Scholar
  25. Moali C, Boucher JL, Sari MA, Stuehr DJ, Mansuy D (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-l-arginine. Biochemistry 37:10453–10460CrossRefPubMedGoogle Scholar
  26. Moali C, Brollo M, Custot J, Sari MA, Boucher JL, Stuehr DJ, Mansuy D (2000) Recognition of alpha-amino acids bearing various C = NOH functions by nitric oxide synthase and arginase involves very different structural determinants. Biochemistry 39:8208–8218CrossRefPubMedGoogle Scholar
  27. Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. New Engl J Med 329:2002–2012CrossRefPubMedGoogle Scholar
  28. Mudd SH, Brosnan JT, Brosnan ME, Jacobs RL, Stabler SP, Allen RH, Vance DE, Wagner C (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85:19–25PubMedGoogle Scholar
  29. Paroni R, Fermo I, Fiorina P, Cighetti G (2005) Determination of asymmetric and symmetric dimethylarginines in plasma of hyperhomocysteinemic subjects. Amino Acids 28(4):389–394CrossRefPubMedGoogle Scholar
  30. Perna M, Roman MJ, Alpert DR, Crow MK, Lockshin MD, Sammaritano L, Devereux RB, Cooke JP, Salmon JE (2010) Relationship of asymmetric dimethylarginine and homocysteine to vascular aging in systemic lupus erythematosus patients. Arthritis Rheum 2010(62):1718–1722CrossRefGoogle Scholar
  31. Pilz S, Tomaschitz A, Meinitzer A, Drechsler C, Ritz E, Krane V, Wanner C, Bohm BO, März W (2011) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42:1132–1134CrossRefPubMedGoogle Scholar
  32. Roubenoff R, Dellaripa P, Nadeau MR, Abad LW, Muldoon BA, Selhub J, Rosenberg IH (1997) Abnormal homocysteine metabolism in rheumatoid arthritis. Arthritis Rheum 40:718–722CrossRefPubMedGoogle Scholar
  33. Ryan WL, Wells IC (1964) Homocitrulline and homoarginine synthesis from lysine. Science 144:1122–1127CrossRefPubMedGoogle Scholar
  34. Ryan WL, Johnson RJ, Dimari S (1969) Homoarginine synthesis by rat kidney. Arch Biochem Biophys 131:521–526CrossRefPubMedGoogle Scholar
  35. Sobczak A, Prokopowicz A, Radek M, Szula M, Zaciera M, Kurek J, Goniewicz ML (2014) Tobacco smoking decreases plasma concentration of the emerging cardiovascular risk marker, l-homoarginine. Circ J 78:1254–1258CrossRefPubMedGoogle Scholar
  36. Stühlinger MC, Oka RK, Graf EE, Schmölzer I, Upson BM, Kapoor O, Szuba A, Malinow MR, Wascher TC, Pachinger O, Cooke JP (2003) Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation 108:933–938CrossRefPubMedGoogle Scholar
  37. Surdacki A, Martens-Lobenhoffer J, Wloch A et al (2007) Elevated plasma asymmetric dimethyl-l-arginine levels are linked to endothelial progenitor cell depletion and carotid atherosclerosis in rheumatoid arthritis. Arthritis Rheum 56:809–819CrossRefPubMedGoogle Scholar
  38. Tsikas D (2008) A critical review and discussion of analytical methods in the l-arginine/nitric oxide area of basic and clinical research. Anal Biochem 379:139–163CrossRefPubMedGoogle Scholar
  39. Tsikas D, Kayacelebi AA (2014) Do homoarginine and asymmetric dimethylarginine act antagonistically in the cardiovascular system? Circ J 78:2094–2095CrossRefPubMedGoogle Scholar
  40. Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC (2000) Endogenous nitric oxide synthase inhibitors are responsible for the l-arginine paradox. FEBS Lett 478:1–3CrossRefPubMedGoogle Scholar
  41. Tsikas D, Schubert B, Gutzki FM, Sandmann J, Frölich JC (2003) Quantitative determination of circulating and urinary asymmetric dimethylarginine (ADMA) in humans by gas chromatography-tandem mass spectrometry as methyl ester tri(N-pentafluoropropionyl) derivative. J Chromatogr B 798:87–99CrossRefGoogle Scholar
  42. Tsikas D, Thum T, Becker T, Pham VV, Chobanyan K, Mitschke A, Beckmann B, Gutzki FM, Bauersachs J, Stichtenoth DO (2007) Accurate quantification of dimethylamine (DMA) in human urine by gas chromatography-mass spectrometry as pentafluorobenzamide derivative: evaluation of the relationship between DMA and its precursor asymmetric dimethylarginine (ADMA) in health and disease. J Chromatogr B 851:229–239CrossRefGoogle Scholar
  43. Valtonen P, Laitinen T, Lyyra-Laitinen T, Raitakari OT, Juonala M, Viikari JS, Heiskanen N, Vanninen E, Punnonen K, Heinonen S (2008) Serum l-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ J 72:1879–1884CrossRefPubMedGoogle Scholar
  44. van der Zwan LP, Davids M, Scheffer PG, Dekker JM, Stehouver CDA, Teerlink T (2013) l-Homoarginine and arginine are antagonistically related to blood pressure in an elderly population: the Hoorn study. J Hypertens 31:1114–1123CrossRefPubMedGoogle Scholar
  45. Wanby P, Brattström L, Brudin L, Hultberg B, Teerlink T (2003) Asymmetric dimethylarginine and total homocysteine in plasma after oral methionine loading. Scand J Clin Lab Invest 63:347–353CrossRefPubMedGoogle Scholar
  46. Wang J, Sim AS, Wang XL, Salonikas C, Naidoo D, Wilcken DE (2006) Relations between plasma asymmetric dimethylarginine (ADMA) and risk factors for coronary disease. Atherosclerosis 184:383–388CrossRefPubMedGoogle Scholar
  47. Willers J, Hahn A (2012) Cardiovascular risk in patients with rheumatoid arthritis: assessment of several traditional risk parameters and of a German risk score model. Rheumatol Int 32:3741–3749CrossRefPubMedGoogle Scholar
  48. Willers J, Fasse S, Putschky N et al (2011) Combined add-on supplementation of omega-3 fatty acids, vitamin E, vitamin A, copper, and selenium in rheumatoid arthritis. Food Nutr Sci 2:714–723CrossRefGoogle Scholar
  49. Wright K, Crowson CS, Gabriel SE (2014) Cardiovascular comorbidity in rheumatic diseases: a focus on heart failure. Heart Fail Clin 10:339–352PubMedCentralCrossRefPubMedGoogle Scholar
  50. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168PubMedCentralCrossRefPubMedGoogle Scholar
  51. Yoo JH, Lee SC (2001) Elevated levels of plasma homocyst(e)ine and asymmetric dimethylarginine in elderly patients with stroke. Atherosclerosis 158:425–430CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Arslan Arinc Kayacelebi
    • 1
  • Janina Willers
    • 2
  • Vu Vi Pham
    • 1
  • Andreas Hahn
    • 2
  • Jessica Y. Schneider
    • 1
  • Sabine Rothmann
    • 1
  • Jürgen C. Frölich
    • 1
  • Dimitrios Tsikas
    • 1
    Email author
  1. 1.Centre of Pharmacology and ToxicologyHannover Medical SchoolHannoverGermany
  2. 2.Institute of Food Science and Human NutritionLeibniz University of HannoverHannoverGermany

Personalised recommendations