Skip to main content
Log in

Investigation of the automated solid-phase synthesis of a 38mer peptide with difficult sequence pattern under different synthesis strategies

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Difficult peptides are a constant challenge in solid-phase peptide synthesis. In particular, hydroxyl amino acids such as serine can cause severe breakdowns in coupling yields even several amino acids after the insertion of the critical amino acid. This paper investigates several methods of improving synthesis yields of difficult peptides including the use of different resins, activators and the incorporation of a structure-breaking pseudoproline dipeptide building block both alone and in combination with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedini A, Raleigh DP (2005) Incorporation of pseudoproline derivatives allows the facile synthesis of human IAPP, a highly amyloidogenic and aggregation-prone polypeptide. Org Lett 7:693–696. doi:10.1021/ol047480+

    Article  CAS  PubMed  Google Scholar 

  • Bedford J, Hyde C, Johnson T, Jun W, Owen D, Quibell M, Sheppard RC (1992) Amino acid structure and “difficult sequences” in solid phase peptide synthesis. Int J Pept Prot Res 40:300–307

    Article  CAS  Google Scholar 

  • Cardona V, Eberle I, Barthélémy S, Beythien J, Doerner B, Schneeberger P, Keyte J, White PD (2008) Application of Dmb-dipeptides in the Fmoc SPPS of difficult and aspartimide-prone sequences. Int J Pept Res Ther 14:285–292. doi:10.1007/s10989-008-9154-z

    Article  CAS  Google Scholar 

  • Carpino LA, Krause E, Dan Sferdean C, Schümann M, Fabian H, Bienert M, Beyermann M (2004) Synthesis of ‘difficult’ peptide sequences: application of a depsipeptide technique to the Jung-Redemann 10- and 26-mers and the amyloid peptide Aβ(1–42). Tetrahedron Lett 45:7519–7523. doi:10.1016/j.tetlet.2004.07.162

    Article  CAS  Google Scholar 

  • Clippingdale AB, Macris M, Wade JD, Barrow CJ (1999) Synthesis and secondary structural studies of penta(acetyl-Hmb)Aβ(1–40). J Pept Res 53:665–672

    Article  CAS  PubMed  Google Scholar 

  • Coin I, Dölling R, Krause E, Bienert M, Beyermann M, Dan Sferdean C, Carpino LA (2006) Depsipeptide methodology for solid-phase peptide synthesis: circumventing side reactions and development of an automated technique via depsidipeptide units. J Org Chem 71:6171–6177. doi:10.1021/jo060914p

    Article  CAS  PubMed  Google Scholar 

  • Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nature Prot 2(12):3247–3256. doi:10.1038/nprot.2007.454

    Article  CAS  Google Scholar 

  • De Crescenzo G, Litowski JR, Hodges RS, O’Connor-McCourt MD (2003) Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: effect of chain length on the kinetic and thermodynamic constants of binding. Biochemistry 42:1754–1763. doi:10.1021/bi0268450

    Article  PubMed  Google Scholar 

  • De la Torre BG, Jakab A, Andreu D (2007) Polyethyleneglycol-based resins as solid supports for the synthesis of difficult or long peptides. Int J Pept Res Ther 13(1–2):265–270. doi:10.1007/s10989-006-9077-5

    Article  Google Scholar 

  • Echalier C, Al-Halifa S, Kreiter A, Enjalbal C, Sanchez P, Ronga L, Puget K, Verdié P, Amblard M, Martinez J, Subra G (2013) Heating and microwave assisted SPPS of C-terminal acid peptides on trityl resin: the truth behind the yield. Amino Acids 45:1395–1403. doi:10.1007/s00726-013-1604-z

    Article  CAS  PubMed  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Prot Res 35:161–214

    Article  CAS  Google Scholar 

  • García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R, Côté S, Tulla-Puche J, Albericio F (2006a) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220. doi:10.1021/cc0600019

    Article  PubMed  Google Scholar 

  • García-Martín F, White P, Steinauer R, Simon Côté S, Tulla-Puche J, Albericio F (2006b) The synergy of ChemMatrix resin and pseudoproline building blocks renders RANTES, a complex aggregated chemokine. Biopolymers (Pept Sci) 84:566–575. doi:10.1002/bip.20564

    Article  Google Scholar 

  • Goncalves V, Gautier B, Huguenot F, Leproux P, Garbay C, Vidal M, Inguimbert N (2009) Total chemical synthesis of the D2 domain of human VEGF receptor 1. J Pept Sci 15:417–422. doi:10.1002/psc.1133

    Article  CAS  PubMed  Google Scholar 

  • Haack T, Mutter M (1992) Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis. Tetrahedron Lett 33:1589–1592. doi:10.1016/S0040-4039(00)91681-2

    Article  CAS  Google Scholar 

  • Harris PWR, Kowalczyk R, Hay DL, Brimble MA (2013) A single pseudoproline and microwave solid phase peptide synthesis facilitates an efficient synthesis of human amylin 1–37. Int J Pept Res Ther 19:147–155. doi:10.1007/s10989-012-9325-9

    Article  CAS  Google Scholar 

  • Hussein WM, Liu TY, Toth I, Skwarczynski M (2013) Microwave-assisted synthesis of difficult sequence-containing peptides using the isopeptide method. Org Biomol Chem 11:2370–2376. doi:10.1039/c3ob00030c

    Article  CAS  PubMed  Google Scholar 

  • Hyde C, Johnson T, Sheppard RC (1992) Internal aggregation during solid phase peptide synthesis: dimethyl sulfoxide as a powerful dissociating solvent. J Chem Soc Chem Commun 21:1573–1575. doi:10.1039/C39920001573

    Article  Google Scholar 

  • Kempe M, Barany G (1996) CLEAR: a novel family of highly cross-linked polymeric supports for solid-phase synthesis. J Am Chem Soc 118:7083–7093

    Article  CAS  Google Scholar 

  • Klis WA, Stewart JM (1990) Chaotropic salts improve SPPS coupling reactions. In: Rivier JE, Marshall GR (eds) Peptides, chemistry, structure and biology. ESCOM, Leiden, The Netherlands, pp 904–906

    Google Scholar 

  • McNamara JF, Lombardo H, Pillai SK, Jensen I, Albericio F, Kates SA (2000) An efficient solid-phase strategy for the construction of chemokines. J Pept Sci 6:512–518

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB, Littau V (1968) In: Bricas E (ed) Peptides 1968, Proc Eur Pept Symp. 9th, North-Holland Publishing Co., Amsterdam, p.168

  • Narita M, Chen J-Y, Sato H, Lim Y (1985) Critical peptide size for insolubility caused by a β-sheet aggregation and solubility improvement in hydrophobic peptides by replacement of alanine residues with α-aminobutyric acid residues. Bull Chem Soc Jpn 58:2494–2501

    Article  CAS  Google Scholar 

  • Northfield SE, Roberts KD, Mountford SJ, Hughes RA, Kaiserman D, Mangan M, Pike RN, Bird PI, Thompson PE (2010) Synthesis of ‘‘difficult’’ fluorescence quenched substrates of granzyme C. Int J Pept Res Ther 16:159–165. doi:10.1007/s10989-010-9220-1

    Article  CAS  Google Scholar 

  • Pedersen SL, Tofteng AP, Malik L, Jensen KJ (2012) Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 41:1826–1844. doi:10.1039/c1cs15214a

    Article  CAS  PubMed  Google Scholar 

  • Pillai VNR, Mutter M (1981) Conformational studies of poly(oxyethy1ene)-bound peptides and protein sequences. Acc Chem Res 14:122–130

    Article  CAS  Google Scholar 

  • Quibell M, Owen D, Packman LC, Johnson T (1994) Suppression of piperidine-mediated side product formation for Asp(OtBu)-containing peptides by the use of N-(2-Hydroxy-4-Methoxybenzyl) (Hmb) backbone amide protection. J Chem Soc Chem Commun 20:2343–2344. doi:10.1039/C39940002343

    Article  Google Scholar 

  • Rizzolo F, Testa C, Lambardi D, Chorev M, Chelli M, Rovero P, Papini AM (2011) Conventional and microwave-assisted SPPS approach: a comparative synthesis of PTHrP(1–34)NH2. J Pept Sci 17:708–714. doi:10.1002/psc.1395

    Article  CAS  PubMed  Google Scholar 

  • Roodbeen R, Pedersen SL, Hosseini M, Jensen KJ (2012) Microwave heating in the solid-phase synthesis of N-methylated peptides: when is room temperature better? Eur J Org Chem. doi:10.1002/ejoc.201201050

    Google Scholar 

  • Sampson WR, Patsouras H, Ede NJ (1999) The synthesis of ‘difficult’ peptides using 2-hydroxy-4-methylbenzyl or pseudoproline amino acid building blocks: a comparative study. J Pept Sci 5:403–409

    Article  CAS  PubMed  Google Scholar 

  • Ullmann V, Rädisch M, Boos I, Freund J, Pöhner C, Schwarzinger S, Unverzagt C (2012) Convergent solid-phase synthesis of N-glycopeptides facilitated by pseudoprolines at consensus-sequence Ser/Thr residues. Angew Chem Int Ed 51:11566–11570. doi:10.1002/anie.201204272

    Article  CAS  Google Scholar 

  • Vernieri E, Valle J, Andreu D, de la Torre BG (2014) An optimized Fmoc synthesis of human defensin 5. Amino Acids 46:395–400. doi:10.1007/s00726-013-1629-3

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Aussedat B, Vohra Y, Danishefsky SJ (2012) An advance in the chemical synthesis of homogeneous N-linked glycopolypeptides by convergent aspartylation. Angew Chem Int Ed 51:11571–11575. doi:10.1002/anie.201205038

    Article  CAS  Google Scholar 

  • White PD, Chan WC (2000) In: Fmoc solid phase synthesis. A practical approach, Oxford University Press Inc., New York, p10

  • White P, Keyte JW, Bailey K, Bloomberg G (2004) Expediting the Fmoc solid phase synthesis of long peptides through the application of dimethyloxazolidine dipeptides. J Pept Sci 10:18–26. doi:10.1002/psc.484

    Article  CAS  PubMed  Google Scholar 

  • Wöhr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X, Mutter M (1996) Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J Am Chem Soc 118:9218–9227

    Article  Google Scholar 

  • Zahariev Sotir, Guarnaccia Corrado, Pongor Csaba I, Quaroni Luca, Čemažar Maša, Pongor Sándor (2006) Synthesis of ‘difficult’ peptides free of aspartimide and related products, using peptoid methodology. Tetrahedron Lett 47(25):4121–4124. doi:10.1016/j.tetlet.2006.04.074

    Article  CAS  Google Scholar 

  • Zhang L, Goldhammer C, Henkel B, Panhaus G, Zuehl F, Jung G, Bayer E (1994) “Magic mixture” a powerful solvent system for solid-phase synthesis of difficult peptides. In: Epton R (ed) Innovation and perspectives in solid phase synthesis 1994. Mayflower Worldwide Ltd, Birmingham, pp 711–716

    Google Scholar 

Download references

Acknowledgments

We thank Myriame S. Gabay, the former manager of the now closed Peptide Array Facility at the Brain Research Centre at the University of British Columbia (UBC), for her support of initial project work. D. W. also thanks Kuan Yu Nan, student at UBC, for his valuable general assistance while working at Kinexus. The authors thank Chris Meschino, UBC, for critical reading of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk F. H. Winkler.

Additional information

Handling Editor: J. Bode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, D.F.H., Tian, K. Investigation of the automated solid-phase synthesis of a 38mer peptide with difficult sequence pattern under different synthesis strategies. Amino Acids 47, 787–794 (2015). https://doi.org/10.1007/s00726-014-1909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1909-6

Keywords

Navigation