Skip to main content
Log in

FRET-based analysis of protein-nucleic acid interactions by genetically incorporating a fluorescent amino acid

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein–nucleic acid interaction is an important process in many biological phenomena. In this study, a fluorescence resonance energy transfer (FRET)-based protein–DNA binding assay has been developed, in which a fluorescent amino acid is genetically incorporated into a DNA-binding protein. A coumarin-containing amino acid was incorporated into a DNA-binding protein, and the mutant protein specifically produced a FRET signal upon binding to its cognate DNA labeled with a fluorophore. The protein–DNA binding affinity was then measured under equilibrium conditions. This method is advantageous for studying protein-nucleic acid interactions, because it is performed under equilibrium conditions, technically easy, and applicable to any nucleic acid-binding protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson BJ, Larkin C, Guja K, Schildbach JF (2008) Using fluorophore-labeled oligonucleotides to measure affinities of protein–DNA interactions. Methods Enzymol 450:253–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berg O, von Hippel P (1988) Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J Mol Biol 200:709–723

    Article  CAS  PubMed  Google Scholar 

  • Boger DL, Desharnais J, Capps K (2003) Solution-phase combinatorial libraries: modulating cellular signaling by targeting protein–protein or protein–DNA interactions. Angew Chem Int Ed Engl 42:4138–4176

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz M, Senear DF, Shea MA, Ackers GK (1986) Quantitative DNase footprint titration: a method for studying protein–DNA interactions. Methods Enzymol 130:132–181

    Article  CAS  PubMed  Google Scholar 

  • Cai Y-H, Huang H (2012) Advances in the study of protein–DNA interaction. Amino Acids 43:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Guo J, Lee HS, Schultz PG (2013) A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 135:12540–12543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Crombrugghe B, Busby S, Buc H (1984) Cyclic AMP receptor protein: role in transcription activation. Science 224:831–838

    Article  PubMed  Google Scholar 

  • Fried MG, Bromberg JL (1997) Factors that affect the stability of protein–DNA complexes during gel electrophoresis. Electrophoresis 18:6–11

    Article  CAS  PubMed  Google Scholar 

  • Fried MG, Liu G (1994) Molecular sequestration stabilizes CAP-DNA complexes during polyacrylamide gel electrophoresis. Nucleic Acids Res 22:5054–5059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc 2:1849–1861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HS, Schultz PG (2008) Biosynthesis of a site-specific DNA cleaving protein. J Am Chem Soc 130:13194–13195

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Guo J, Lemke EA, Dimla RD, Schultz PG (2009a) Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisia. J Am Chem Soc 131:12921–12923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HS, Dimla RD, Schultz PG (2009b) Protein–DNA photo-crosslinking with a genetically encoded benzophenone-containing amino acid. Bioorg Med Chem Lett 19:5222–5224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  CAS  PubMed  Google Scholar 

  • Oda M, Nakamura H (2000) Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition. Genes Cells 5:319–326

    Article  CAS  PubMed  Google Scholar 

  • Oehler S, Alex R, Barker A (1999) Is nitrocellulose filter binding really a universal assay for protein–DNA interactions? Anal Biochem 268:330–336

    Article  CAS  PubMed  Google Scholar 

  • Park N, Ryu J, Jang S, Lee HS (2012) Metal ion affinity purification of proteins by genetically incorporating metal-chelating amino acids. Tetrahedron 68:4649–4654

    Article  CAS  Google Scholar 

  • Parkinson G, Wilson C, Gunaseker A, Ebright YW, Ebright RH (1996) Structure of the CAP-DNA complex at 2.5 Å resolution: a complete picture of the protein–DNA interface. J Mol Biol 260:395–408

    Article  CAS  PubMed  Google Scholar 

  • Pendergrast PS, Ebright YW, Ebright RH (1994) High-specificity DNA cleavage agent: design and application to kilobase and megabase DNA substrates. Science 265:959–962

    Article  CAS  PubMed  Google Scholar 

  • Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Speight LC, Muthusamy AK et al (2013) Efficient synthesis and in vivo incorporation of acridon-2-ylalanine, a fluorescent amino acid for lifetime and forster resonance energy transfer/luminescence resonance energy transfer studies. J Am Chem Soc 135:18806–18814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci USA 103:9785–9789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vossen KM, Fried MG (1997) Sequestration stabilizes lac repressor-DNA complexes during gel electrophoresis. Anal Biochem 245:85–92

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Ed Engl 44:34–66

    Article  CAS  Google Scholar 

  • Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128:8738–8739

    Article  CAS  PubMed  Google Scholar 

  • Woodbury CP, von Hippel PH (1983) On the determination of deoxyribonucleic acid-protein interactions parameters using the nitrocellulose filter-binding assay. Biochemistry 22:4730–4737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2014003870), and the Sogang University Research Grant (201010048.01). We would like to thank P. G. Schultz for providing us the plasmids.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyubong Jo or Hyun Soo Lee.

Additional information

Handling Editor: D. Tsikas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kang, H., Ko, W. et al. FRET-based analysis of protein-nucleic acid interactions by genetically incorporating a fluorescent amino acid. Amino Acids 47, 729–734 (2015). https://doi.org/10.1007/s00726-014-1900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1900-2

Keywords

Navigation