Skip to main content
Log in

Metabolome-wide association study of phenylalanine in plasma of common marmosets

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Little systematic knowledge exists concerning the impacts of cumulative lifelong exposure, termed the exposome, on requirements for nutrients. Phenylalanine (Phe) is an essential dietary amino acid with an aromatic ring structure similar to endogenous metabolites, dietary compounds and environmental agents. Excess plasma Phe in genetic disease or nutritional deficiency of Phe has adverse health consequences. In principle, structurally similar chemicals interfering with Phe utilization could alter Phe requirement at an individual level. As a strategy to identify components of the exposome that could interfere with Phe utilization, we tested for metabolites correlating with Phe concentration in plasma of a non-human primate species, common marmosets (Callithrix jacchus). The results of tests for more than 5,000 chemical features detected by high-resolution metabolomics showed 17 positive correlations with Phe metabolites and other amino acids. Positive and negative correlations were also observed for 33 other chemicals, which included matches to endogenous metabolites and dietary, microbial and environmental chemicals in database searches. Chemical similarity analysis showed many of the matches had high structural similarity to Phe. Together, the results show that chemicals in marmoset plasma could impact Phe utilization. Such chemicals could contribute to early lifecycle developmental disorders when neurological development is vulnerable to Phe levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAS:

Chemical abstracts service

CID:

PubChem compound ID

FDR:

False discovery

KEGG:

Kyoto encyclopedia of genes and genomes

LC–MS:

Liquid chromatography–mass spectrometry

m/z :

mass to charge

MWAS:

Metabolome-wide association study

Phe:

Phenylalanine

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

RT:

Retention time

References

  • Anastasoaie V, Kurzius L, Forbes P, Waisbren S (2008) Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Mol Genet Metab 95:17–20

    Article  CAS  PubMed  Google Scholar 

  • Banay-Schwartz M, Palkovits M, Lajtha A (1993) Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans. Neurochem Res 18:417–423

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Blau N, van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Ralph AW, David CS (eds) Annual Reports in Computational Chemistry, vol 4. Elsevier, pp 217–241

  • Collino S et al (2013) Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8:e56564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deo RC et al (2010) Interpreting metabolomic profiles using unbiased pathway models. PLoS Comput Biol 6:e1000692

    Article  PubMed Central  PubMed  Google Scholar 

  • Droge W, Kinscherf R (2008) Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 10:661–678

    Article  PubMed  Google Scholar 

  • Farishian RA, Whittaker JR (1980) Phenylalanine lowers melanin synthesis in mammalian melanocytes by reducing tyrosine uptake: implications for pigment reduction in phenylketonuria. J Invest Dermatol 74:85–89

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Volpi E (2006) Amino acids and muscle loss with aging. J Nutr 136:277S–280S

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukagawa NK, Minaker KL, Rowe JW, Matthews DE, Bier DM, Young VR (1988) Glucose and amino acid metabolism in aging man: differential effects of insulin. Metabolism 37:371–377

    Article  CAS  PubMed  Google Scholar 

  • Hitsman B et al (2008) Effects of acute tyrosine/phenylalanine depletion on the selective processing of smoking-related cues and the relative value of cigarettes in smokers. Psychopharmacology 196:611–621

    Article  CAS  PubMed  Google Scholar 

  • Hsu JW, Goonewardene LA, Rafii M, Ball RO, Pencharz PB (2006) Aromatic amino acid requirements in healthy men measured by indicator amino acid oxidation. Am J Clin Nutr 83:82–88

    CAS  PubMed  Google Scholar 

  • Johnson JM, Yu T, Strobel FH, Jones DP (2010) A practical approach to detect unique metabolic patterns for personalized medicine. Analyst 135:2864–2870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones DP, Park Y, Ziegler TR (2012) Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr 32:183–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadowaki K, Fukino K, Negishi E, Ueno K (2007) Sex differences in PPARgamma expressions in rat adipose tissues. Biol Pharm Bull 30:818–820

    Article  CAS  PubMed  Google Scholar 

  • Kaufman S (1999) A model of human phenylalanine metabolism in normal subjects and in phenylketonuric patients. Proc Natl Acad Sci USA 96:3160–3164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishna RV, Krishnaswamy PR, Rao DR (1971) Enzymic synthesis of N-acetyl-l-phenylalanine in Escherichia coli K12. Biochem J 124:905–913

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee PJ et al (2009) Adults with late diagnosed PKU and severe challenging behaviour: a randomised placebo-controlled trial of a phenylalanine-restricted diet. J Neurol Neurosurg Psychiatry 80:631–635

    Article  CAS  PubMed  Google Scholar 

  • Miller GW, Jones DP (2014) The nature of nurture: refining the definition of the exposome. Toxicol Sci 137:1–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Okano Y, Nagasaka H (2013) Optimal serum phenylalanine for adult patients with phenylketonuria. Mol Genet Metab 110:424–430

    Article  CAS  PubMed  Google Scholar 

  • Phinney KW et al (2013) Development of a standard reference material for metabolomics research. Anal Chem 85:11732–11738

    Article  CAS  PubMed  Google Scholar 

  • Rappaport SM, Smith MT (2010) Epidemiology. Environment and disease risks. Science 330:460–461

    Article  CAS  PubMed  Google Scholar 

  • Roede JR, Uppal K, Liang Y, Promislow DE, Wachtman LM, Jones DP (2013) Characterization of plasma thiol redox potential in a common marmoset model of aging. Redox Biol 1:387–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schumacher U et al (2008) High concentrations of phenylalanine stimulate peroxisome proliferator-activated receptor gamma: implications for the pathophysiology of phenylketonuria. Neurobiol Dis 32:385–390

    Article  CAS  PubMed  Google Scholar 

  • Simon-Manso Y et al (2013) Metabolite Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR, and Clinical Laboratory Analyses, Libraries, and Web-Based Resources. Anal Chem 85:11725–11731

    Article  CAS  PubMed  Google Scholar 

  • Smith CA et al (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  PubMed  Google Scholar 

  • Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP (2013) High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics 9:132–143

    Article  CAS  Google Scholar 

  • Solverson P, Murali SG, Litscher SJ, Blank RD, Ney DM (2012) Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet. PLoS One 7:e45165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stegink LD, Koch R, Blaskovics ME, Filer LJ Jr, Baker GL, McDonnell JE (1981) Plasma phenylalanine levels in phenylketonuric heterozygous and normal adults administered aspartame at 34 mg/kg body weight. Toxicology 20:81–90

    Article  CAS  PubMed  Google Scholar 

  • Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME (2003) Reproduction in captive common marmosets (Callithrix jacchus). Comp Med 53:364–368

    CAS  PubMed  Google Scholar 

  • Udenfriend S, Cooper JR (1953) Assay of l-phenylalanine as phenylethylamine after enzymatic decarboxylation; application to isotopic studies. J Biol Chem 203:953–960

    CAS  PubMed  Google Scholar 

  • Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu T, Jones DP (2013) xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinform 14:15

    Article  Google Scholar 

  • Wachtman LM, Miller AD, Xia D, Curran EH, Mansfield KG (2011) Colonization with nontuberculous mycobacteria is associated with positive tuberculin skin test reactions in the common marmoset (Callithrix jacchus). Comp Med 61:278–284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waisbren SE, Noel K, Fahrbach K, Cella C, Frame D, Dorenbaum A, Levy H (2007) Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol Genet Metab 92:63–70

    Article  CAS  PubMed  Google Scholar 

  • Wanders D, Ghosh S, Stone KP, Van NT, Gettys TW (2014) Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging. Biofactors 40:13–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850

    Article  CAS  Google Scholar 

  • Willett P, Barnard J, Downs G (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    Article  CAS  Google Scholar 

  • Yu T, Park Y, Johnson JM, Jones DP (2009) apLCMS–adaptive processing of high-resolution LC/MS data. Bioinformatics 25:1930–1936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the technical expertise of Yongliang Liang and ViLinh Tran for mass spectrometry analyses. This study was supported by NIH grants, AG038746 (D.J., D. P., L.W.), ES023485 (D.J, Y.G.), ES009047 (D.J.), HL113451 (D.J.) and ES019776 (D.J.).

Conflict of interest

Authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean P. Jones.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, YM., Walker, D.I., Soltow, Q.A. et al. Metabolome-wide association study of phenylalanine in plasma of common marmosets. Amino Acids 47, 589–601 (2015). https://doi.org/10.1007/s00726-014-1893-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1893-x

Keywords

Navigation