Skip to main content
Log in

Plasma glutamine deficiency is associated with multiple organ failure in critically ill children

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

A low plasma glutamine concentration (<420 µmol/L) is an independent risk factor for mortality in critically ill adult patients. Glutamine metabolism in children is less well characterized. However, pediatric ICU (PICU) mortality is low and, therefore, mortality is difficult to use as an endpoint. Here we evaluated if plasma glutamine concentration at admission to the PICU, relates to the development of multiple organ failure, using pediatric logistic organ dysfunction score (PELOD)-score. In this observational study, consecutive critically ill children (n = 149) admitted to the PICU of a tertiary university hospital as well as a reference group of healthy children (n = 60) were included. Plasma glutamine concentration and the PELOD were determined at admission for all patients and at day 5 for those patients still in the PICU. Plasma glutamine concentration at admission was low in the PICU patients as compared to controls (p = 0.00002) and patients with a low plasma glutamine concentration had more organ failure as compared to patients with higher plasma glutamine concentration (p = 0.0001). Plasma glutamine concentration normalized in patients staying >5 days in the PICU. Plasma glutamine depletion was present in 40 % of patients at PICU admission and it was associated with the development of multiple organ failure. Furthermore, the majority of the critically ill children normalized their plasma glutamine concentration within 5 days, which is different from adult ICU patients. The study suggests that an initial plasma glutamine deficiency is associated with multiple organ failure in critically ill children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers MJ, Steyerberg EW, Hazebroek FW, Mourik M, Borsboom GJ, Rietveld T, Huijmans JG, Tibboel D (2005) Glutamine supplementation of parenteral nutrition does not improve intestinal permeability, nitrogen balance, or outcome in newborns and infants undergoing digestive-tract surgery: results from a double-blind, randomized, controlled trial. Ann Surg 241(4):599–606

    Article  PubMed Central  PubMed  Google Scholar 

  • Alonso de Vega JM, Diaz J, Serrano E, Carbonell LF (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30(8):1782–1786

    Article  PubMed  Google Scholar 

  • Becker RM, Wu G, Galanko JA, Chen W, Maynor AR, Bose CL, Rhoads JM (2000) Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr 137(6):785–793. doi:10.1067/mpd.2000.109145

    Article  CAS  PubMed  Google Scholar 

  • Clemmesen JO, Kondrup J, Ott P (2000) Splanchnic and leg exchange of amino acids and ammonia in acute liver failure. Gastroenterology 118(6):1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Dechelotte P, Hasselmann M, Cynober L, Allaouchiche B, Coeffier M, Hecketsweiler B, Merle V, Mazerolles M, Samba D, Guillou YM, Petit J, Mansoor O, Colas G, Cohendy R, Barnoud D, Czernichow P, Bleichner G (2006) l-Alanyl-l-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 34(3):598–604. doi:10.1097/01.CCM.0000201004.30750.D1

    Article  CAS  PubMed  Google Scholar 

  • Flaring UB, Rooyackers OE, Wernerman J, Hammarqvist F (2003a) Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci 104(3):275–282. doi:10.1042/Cs20020198

    Article  CAS  PubMed  Google Scholar 

  • Flaring UB, Rooyackers OE, Wernerman J, Hammarqvist F (2003b) Temporal changes in muscle glutathione in ICU patients. Intensive Care Med 29(12):2193–2198. doi:10.1007/s00134-003-2031-5

    Article  CAS  PubMed  Google Scholar 

  • Flaring UB, Rooyackers OE, Hebert C, Bratel T, Hammarqvist F, Wernerman J (2005) Temporal changes in whole-blood and plasma glutathione in ICU patients with multiple organ failure. Intensive Care Med 31(8):1072–1078. doi:10.1007/s00134-005-2687-0

    Article  CAS  PubMed  Google Scholar 

  • Gamrin L, Essen P, Forsberg AM, Hultman E, Wernerman J (1996) A descriptive study of skeletal muscle metabolism in critically ill patients: free amino acids, energy-rich phosphates, protein, nucleic acids, fat, water, and electrolytes. Crit Care Med 24(4):575–583

    Article  CAS  PubMed  Google Scholar 

  • Goeters C, Wenn A, Mertes N, Wempe C, Van Aken H, Stehle P, Bone HG (2002) Parenteral l-alanyl-l-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30(9):2032–2037. doi:10.1097/01.CtitCareMed0000025908.95498.A3

    Article  CAS  PubMed  Google Scholar 

  • Hammarqvist F, Angsten G, Meurling S, Andersson K, Wernerman J (2010) Age-related changes of muscle and plasma amino acids in healthy children. Amino Acids 39(2):359–366. doi:10.1007/s00726-009-0446-1

    Article  CAS  PubMed  Google Scholar 

  • Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, Elke G, Berger MM, Day AG, Canadian Critical Care Trials G (2013) A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 368(16):1489–1497. doi:10.1056/NEJMoa1212722

    Article  CAS  PubMed  Google Scholar 

  • Houdijk AP, van Leeuwen PA (2000) Glutamine-enriched enteral nutrition in multiple trauma patients. Nutrition 16(1):70–71

    Article  CAS  PubMed  Google Scholar 

  • Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, Gottesman R, Joffe A, Pfenninger J, Hubert P, Lacroix J, Leclerc F (2003) Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet 362(9379):192–197. doi:10.1016/S0140-6736(03)13908-6

    Article  PubMed  Google Scholar 

  • Oladipo OO, Weindel AL, Saunders AN, Dietzen DJ (2011) Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS. Mol Genet Metab 104(4):476–479. doi:10.1016/j.ymgme.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  • Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27(1):84–90

    Article  CAS  PubMed  Google Scholar 

  • Planche T, Dzeing A, Emmerson AC, Onanga M, Kremsner PG, Engel K, Kombila M, Ngou-Milama E, Krishna S (2002) Plasma glutamine and glutamate concentrations in Gabonese children with Plasmodium falciparum infection. QJM 95(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Plunkett E, Galanko J, Lichtman S, Taylor L, Maynor A, Weiner T, Freeman K, Guarisco JL, Wu GY (2005) Serum citrulline levels correlate with enteral tolerance and bowel length in infants with short bowel syndrome. J Pediatr 146(4):542–547. doi:10.1016/j.jpeds.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  • Rodas PC, Rooyackers O, Hebert C, Norberg A, Wernerman J (2012) Glutamine and glutathione at ICU admission in relation to outcome. Clin Sci (Lond) 122(12):591–597. doi:10.1042/CS20110520

    Article  CAS  Google Scholar 

  • Tjader I, Rooyackers O, Forsberg AM, Vesali RF, Garlick PJ, Wernerman J (2004) Effects on skeletal muscle of intravenous glutamine supplementation to ICU patients. Intensive Care Med 30(2):266–275. doi:10.1007/s00134-003-2048-9

    Article  PubMed  Google Scholar 

  • van der Hulst RR, van Kreel BK, von Meyenfeldt MF, Brummer RJ, Arends JW, Deutz NE, Soeters PB (1993) Glutamine and the preservation of gut integrity. Lancet 341(8857):1363–1365

    Article  PubMed  Google Scholar 

  • Vaughn P, Thomas P, Clark R, Neu J (2003) Enteral glutamine supplementation and morbidity in low birth weight infants. J Pediatr 142(6):662–668. doi:10.1067/mpd.2003.208

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen SC, Coss-Bu J, Wu M, Schierbeek H, Joosten KF, Dhar A, van Goudoever JB, Castillo L (2011) Current recommended parenteral protein intakes do not support protein synthesis in critically ill septic, insulin-resistant adolescents with tight glucose control. Crit Care Med 39(11):2518–2525. doi:10.1097/CCM.0b013e3182257410

    Article  CAS  PubMed  Google Scholar 

  • Vesali RF, Klaude M, Rooyackers OE, TJ I, Barle H, Wernerman J (2002) Longitudinal pattern of glutamine/glutamate balance across the leg in long-stay intensive care unit patients. Clin Nutr 21(6):505–514

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22(7):707–710

    Article  CAS  PubMed  Google Scholar 

  • Wernerman J (2008a) Clinical use of glutamine supplementation. Journal Nutr 138(10):2040S–2044S

    CAS  Google Scholar 

  • Wernerman J (2008b) Role of glutamine supplementation in critically ill patients. Curr Opin Anaesthesiol 21(2):155–159. doi:10.1097/ACO.0b013e3282f54fd6

    Article  PubMed  Google Scholar 

  • Wernerman J, Kirketeig T, Andersson B, Berthelson H, Ersson A, Friberg H, Guttormsen AB, Hendrikx S, Pettila V, Rossi P, Sjoberg F, Winso O, Scandinavian Critical Care Trials G (2011) Scandinavian glutamine trial: a pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesthesiol Scand 55(7):812–818. doi:10.1111/j.1399-6576.2011.02453.x

    Article  CAS  PubMed  Google Scholar 

  • Ytrebo LM, Sen S, Rose C, Ten Have GA, Davies NA, Hodges S, Nedredal GI, Romero-Gomez M, Williams R, Revhaug A, Jalan R, Deutz NE (2006) Interorgan ammonia, glutamate, and glutamine trafficking in pigs with acute liver failure. Am J Physiol Gastrointest Liver Physiol 291(3):G373–G381. doi:10.1152/ajpgi.00440.2005

    Article  PubMed  Google Scholar 

  • Ziegler TR, Young LS, Benfell K, Scheltinga M, Hortos K, Bye R, Morrow FD, Jacobs DO, Smith RJ, Antin JH et al (1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med 116(10):821–828

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Foundation for child care, Stockholm, Sweden, from the Swedish Medical Research Council (Projects 04210 and 14244) and the Country Council of Stockholm (Projects 502033 and 511126).We would also like to thank Chris Jollinger-Jonston, Eva Nejman and Annika Schön for their excellent help with performing the study.

Conflict of interest

Nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urban Fläring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmark, L., Rooyackers, O., Wernerman, J. et al. Plasma glutamine deficiency is associated with multiple organ failure in critically ill children. Amino Acids 47, 535–542 (2015). https://doi.org/10.1007/s00726-014-1885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1885-x

Keywords

Navigation