Skip to main content

Advertisement

Log in

Transglutaminase 2 and neuroinflammation

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Neuroinflammatory processes seem to play a pivotal role in various chronic neurodegenerative diseases, characterized also by the pathogenetic accumulation of specific protein aggregates. Several of these proteins have been shown to be substrates of transglutaminases, calcium-dependent enzymes that catalyze protein crosslinking reactions. However, it has recently been demonstrated that transglutaminase 2 (TG2) may also be involved in molecular mechanisms underlying inflammation. In the central nervous system, astrocytes and microglia are the cell types mainly involved in the inflammatory process. This review is focused on the increases of TG2 protein expression and enzyme activity that occur in astroglial, microglial and monocyte cell models in response to inflammatory stimuli. The transcription factor NF-κB is considered the main regulator of inflammation, being activated by a variety of stimuli including calcium influx, oxidative stress and inflammatory cytokines. Under these conditions, the over-expression of TG2 results in the sustained activation of NF-κB. Several findings emphasize the possible role of the TG2/NF-κB activation pathway in neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Although further studies are needed to characterize the TG2/NF-κB cross-talk in monocytes/macrophages/microglia within the central nervous system, some results show that TG2 and NF-κB are co-localized in cell compartments. Together, evidence suggests that TG2 plays a role in neuroinflammation and contributes to the production of compounds that are potentially deleterious to neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

CSF:

Cerebrospinal fluid

DA:

Dopaminergic

HD:

Huntington disease

Hsps:

Heat shock proteins

Htt:

Huntingtin

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-8:

Interleukin-8

LPS:

Lipopolysaccharide

MS:

Multiple sclerosis

NF-κB:

Nuclear factor-kappa B

NO:

Nitric oxide

PD:

Parkinson’s disease

PLA2:

Phospholipase A2

SOD1:

Superoxide dismutase 1

TG2:

Tissue transglutaminase

TG2-S:

TG2 short form

TGM2:

Transglutaminase 2 gene

TGs:

Transglutaminases

TNF-α:

Tumor necrosis factor-α

References

  • Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8:221–232

    Article  CAS  PubMed  Google Scholar 

  • Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877

    Article  PubMed Central  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Block F, Dihne M, Loos M (2005) Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 75:342–365

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Griffin S, Munch G, Pasinetti GM (2002) Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis 4:193–201

    CAS  PubMed  Google Scholar 

  • Caccamo D, Campisi A, Currò M, Li Volti G, Vanella A, Ientile R (2004) Excitotoxic and post-ischemic neurodegeneration: involvement of transglutaminases. Amino Acids 27:373–379

    Article  CAS  PubMed  Google Scholar 

  • Caccamo D, Currò M, Ientile R (2010) Potential of transglutaminase 2 as a therapeutic target. Expert Opin Ther Targets 14:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Caccamo D, Condello S, Ferlazzo N, Currò M, Griffin M, Ientile R (2013) Transglutaminase 2 interaction with small heat shock proteins mediate cell survival upon excitotoxic stress. Amino Acids 44:151–159

    Article  CAS  PubMed  Google Scholar 

  • Campisi A, Caccamo D, Li Volti G, Currò M, Parisi G, Avola R, Vanella A, Ientile R (2004) Glutamate-evoked redox state alterations are involved in tissue transglutaminase upregulation in primary astrocyte cultures. FEBS Lett 578:80–84

    Article  CAS  PubMed  Google Scholar 

  • Candore G, Balistreri CR, Grimaldi MP, Vasto S, Listi F, Chiappelli M, Licastro F, Lio D, Caruso C (2006) Age-related inflammatory diseases: role of genetics and gender in the pathophysiology of Alzheimer’s disease. Ann N Y Acad Sci 1089:472–486

    Article  CAS  PubMed  Google Scholar 

  • Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, Amendola A, Nardacci R, Metivier D, Este JA, Piacentini M, Kroemer G (2001) Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 194:1097–1110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang KH, Wu YR, Chen YC, Chen CM (2014) Plasma Inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun. doi:10.1016/j.bbi.2014.09.011

    Google Scholar 

  • Citron BA, Suo Z, SantaCruz K, Davies PJ, Qin F, Festoff BW (2002) Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 40:69–78

    Article  CAS  PubMed  Google Scholar 

  • Colak G, Johnson GV (2012) Complete transglutaminase 2 ablation results in reduced stroke volumes and astrocytes that exhibit increased survival in response to ischemia. Neurobiol Dis 45:1042–1050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord: Drug Targets 9:174–191

    Article  CAS  Google Scholar 

  • Currò M, Ferlazzo N, Condello S, Caccamo D, Ientile R (2010) Transglutaminase 2 silencing reduced the beta-amyloid-effects on the activation of human THP-1 cells. Amino Acids 39:1427–1433

    Article  PubMed  Google Scholar 

  • Currò M, Ferlazzo N, Risitano R, Condello S, Vecchio M, Caccamo D, Ientile R (2014) Transglutaminase 2 and phospholipase A(2) interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids 46:759–766

    Article  PubMed  Google Scholar 

  • Dalakas MC (2013) Pathophysiology of autoimmune polyneuropathies. Presse Med 42:e181–e192

    Article  PubMed  Google Scholar 

  • Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV, Mehta K (2014) Transglutaminase regulation of cell function. Physiol Rev 94:383–417

    Article  CAS  PubMed  Google Scholar 

  • Fahn SPS (2000) Parkinsonism. In: Rowland LP (ed) Meritt’s Neurology. 10th edition edn. Lippincott, New York, pp 679–693

  • Festoff BW, SantaCruz K, Arnold PM, Sebastian CT, Davies PJ, Citron BA (2002) Injury-induced “switch” from GTP-regulated to novel GTP-independent isoform of tissue transglutaminase in the rat spinal cord. J Neurochem 81:708–718

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Honda M, Hayashi R, Ogawa K, Ando M, Yamauchi M, Nagata Y (1998) Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss. J Neurol Sci 158:53–57

    Article  CAS  PubMed  Google Scholar 

  • Ha SK, Moon E, Lee P, Ryu JH, Oh MS, Kim SY (2012) Acacetin attenuates neuroinflammation via regulation the response to LPS stimuli in vitro and in vivo. Neurochem Res 37:1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:1476–4598

    Article  Google Scholar 

  • Hohmann HP, Brockhaus M, Baeuerle PA, Remy R, Kolbeck R, van Loon AP (1990) Expression of the types A and B tumor necrosis factor (TNF) receptors is independently regulated, and both receptors mediate activation of the transcription factor NF-kappa B. TNF alpha is not needed for induction of a biological effect via TNF receptors. J Biol Chem 265:22409–22417

    CAS  PubMed  Google Scholar 

  • Hostenbach S, Cambron M, D’Haeseleer M, Kooijman R, De Keyser J (2014) Astrocyte loss and astrogliosis in neuroinflammatory disorders. Neurosci Lett 565:39–41

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Campisi A, Raciti G, Caccamo D, Currò M, Cannavo G, Li Volti G, Macaione S, Vanella A (2003) Cystamine inhibits transglutaminase and caspase-3 cleavage in glutamate-exposed astroglial cells. J Neurosci Res 74:52–59

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Caccamo D, Marciano MC, Currò M, Mannucci C, Campisi A, Calapai G (2004) Transglutaminase activity and transglutaminase mRNA transcripts in gerbil brain ischemia. Neurosci Lett 363:173–177

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33:385–394

    Article  CAS  PubMed  Google Scholar 

  • Ikura K, Shinagawa R, Suto N, Sasaki R (1994) Increase caused by interleukin-6 in promoter activity of guinea pig liver transglutaminase gene. Biosci Biotechnol Biochem 58:1540–1541

    Article  CAS  PubMed  Google Scholar 

  • Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJ (2009) Transglutaminases and neurodegeneration. J Neurochem 109:160–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John GR, Chen L, Rivieccio MA, Melendez-Vasquez CV, Hartley A, Brosnan CF (2004) Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J Neurosci 24:2837–2845

    Article  CAS  PubMed  Google Scholar 

  • Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, Steinman L (1999) Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96:7388–7393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci 11:3026–3035

    Article  CAS  PubMed  Google Scholar 

  • Kuncio GS, Tsyganskaya M, Zhu J, Liu SL, Nagy L, Thomazy V, Davies PJ, Zern MA (1998) TNF-alpha modulates expression of the tissue transglutaminase gene in liver cells. Am J Physiol 274:G240–G245

    CAS  PubMed  Google Scholar 

  • Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. Faseb J 15:155–163

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DM, Major EO (2002) HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 4:301–308

    Article  CAS  PubMed  Google Scholar 

  • Lazarev VF, Sverchinskyi DV, Ippolitova MV, Stepanova AV, Guzhova IV, Margulis BA (2013) Factors affecting aggregate formation in cell models of Huntington’s disease and amyotrophic lateral sclerosis. Acta Naturae 5:81–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279:53725–53735

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  • Luedde T, Schwabe RF (2011) NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8:108–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno JJ (2006) Effects of antiflammins on transglutaminase and phospholipase A2 activation by transglutaminase. Int Immunopharmacol 6:300–303

    Article  CAS  PubMed  Google Scholar 

  • Muma NA (2007) Transglutaminase is linked to neurodegenerative diseases. J Neuropathol Exp Neurol 66(4):258–263

    Article  CAS  PubMed  Google Scholar 

  • Nardacci R, Antinori A, Larocca LM, Arena V, Amendola A, Perfettini JL, Kroemer G, Piacentini M (2005) Characterization of cell death pathways in human immunodeficiency virus-associated encephalitis. Am J Pathol 167:695–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noelker C, Morel L, Osterloh A, Alvarez-Fischer D, Lescot T, Breloer M, Gold M, Oertel WH, Henze C, Michel PP, Dodel RC, Lu L, Hirsch EC, Hunot S, Hartmann A (2014) Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease. J Neuroinflammation 11:1742–2094

    Article  Google Scholar 

  • Nurminskaya MV, Belkin AM (2012) Cellular functions of tissue transglutaminase. Int Rev Cell Mol Biol 294:1–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4:433–442

    Article  PubMed  Google Scholar 

  • Oono M, Okado-Matsumoto A, Shodai A, Ido A, Ohta Y, Abe K, Ayaki T, Ito H, Takahashi R, Taniguchi N, Urushitani M (2014) Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J Neurochem 128:403–418

    Article  CAS  PubMed  Google Scholar 

  • Park KC, Chung KC, Kim YS, Lee J, Joh TH, Kim SY (2004) Transglutaminase 2 induces nitric oxide synthesis in BV-2 microglia. Biochem Biophys Res Commun 323:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Pittier R, Sauthier F, Hubbell JA, Hall H (2005) Neurite extension and in vitro myelination within three-dimensional modified fibrin matrices. J Neurobiol 63:1–14

    Article  CAS  PubMed  Google Scholar 

  • Rivest S (2003) Molecular insights on the cerebral innate immune system. Brain Behav Immun 17:13–19

    Article  CAS  PubMed  Google Scholar 

  • Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, Taffe MA, Fox HS (2003) Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 162:2041–2057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigo L, Hernandez-Lahoz C, Fuentes D, Alvarez N, Lopez-Vazquez A, Gonzalez S (2011) Prevalence of celiac disease in multiple sclerosis. BMC Neurol 11:1471–2377

    Article  Google Scholar 

  • Rostasy K, Monti L, Yiannoutsos C, Wu J, Bell J, Hedreen J, Navia BA (2000) NFkappaB activation, TNF-alpha expression, and apoptosis in the AIDS-Dementia-Complex. J Neurovirol 6:537–543

    Article  CAS  PubMed  Google Scholar 

  • Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y, Metz CN (2005) Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 201:1113–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24:167–176

    Article  CAS  PubMed  Google Scholar 

  • Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, Han D, Hamilton JL, Simonyi A, Sun AY, Gu Z, Hong JS, Weisman GA, Sun GY (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. J Neuroinflammation 8:1742–2094

    Article  Google Scholar 

  • Silvestroni A, Faull RL, Strand AD, Moller T (2009) Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. NeuroReport 20:1098–1103

    Article  PubMed  Google Scholar 

  • Tucholski J, Roth KA, Johnson GV (2006) Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. J Neurochem 97:582–594

    Article  CAS  PubMed  Google Scholar 

  • van Strien ME, Drukarch B, Bol JG, van der Valk P, van Horssen J, Gerritsen WH, Breve JJ, van Dam AM (2011a) Appearance of tissue transglutaminase in astrocytes in multiple sclerosis lesions: a role in cell adhesion and migration? Brain Pathol 21:44–54

    Article  PubMed  Google Scholar 

  • van Strien ME, Breve JJ, Fratantoni S, Schreurs MW, Bol JG, Jongenelen CA, Drukarch B, van Dam AM (2011b) Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS One 6:e25037

    Article  PubMed Central  PubMed  Google Scholar 

  • Verma A, Mehta K (2007) Transglutaminase-mediated activation of nuclear transcription factor-kappaB in cancer cells: a new therapeutic opportunity. Curr Cancer Drug Targets 7:559–565

    Article  CAS  PubMed  Google Scholar 

  • Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M (2012) Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. J Biol Chem 287:13063–13083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zainelli GM, Ross CA, Troncoso JC, Muma NA (2003) Transglutaminase cross-links in intranuclear inclusions in Huntington disease. J Neuropathol Exp Neurol 62:14–24

    CAS  PubMed  Google Scholar 

  • Zainelli GM, Dudek NL, Ross CA, Kim SY, Muma NA (2005) Mutant huntingtin protein: a substrate for transglutaminase 1, 2, and 3. J Neuropathol Exp Neurol 64:58–65

    CAS  PubMed  Google Scholar 

  • Zimring JC, Kapp LM, Yamada M, Wess J, Kapp JA (2005) Regulation of CD8+ cytolytic T lymphocyte differentiation by a cholinergic pathway. J Neuroimmunol 164:66–75

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest with regard to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Ientile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ientile, R., Currò, M. & Caccamo, D. Transglutaminase 2 and neuroinflammation. Amino Acids 47, 19–26 (2015). https://doi.org/10.1007/s00726-014-1864-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1864-2

Keywords

Navigation